

CLAN: Exploring Continuous Learning on Commodity Edge Devices using Asynchronous Distributed Neuroevolution

Parth Mannan, Ananda Samajdar and Tushar Krishna

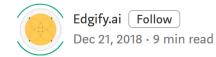
Georgia Institute of Technology

http://synergy.ece.gatech.edu

The Future

Training AI at the Edge

A Revolution in Privacy Constraints for the World of AI



reaming up to train **Developers**

Deloitt Insights

K

FIGURE 3

2020

2024

Jun Wu Contributor **COGNITIVE WORLD** Contributor Group ①

Training at the Network Edge with AI: 3 Key Benefits

By Yasser Khan | May 11, 2020

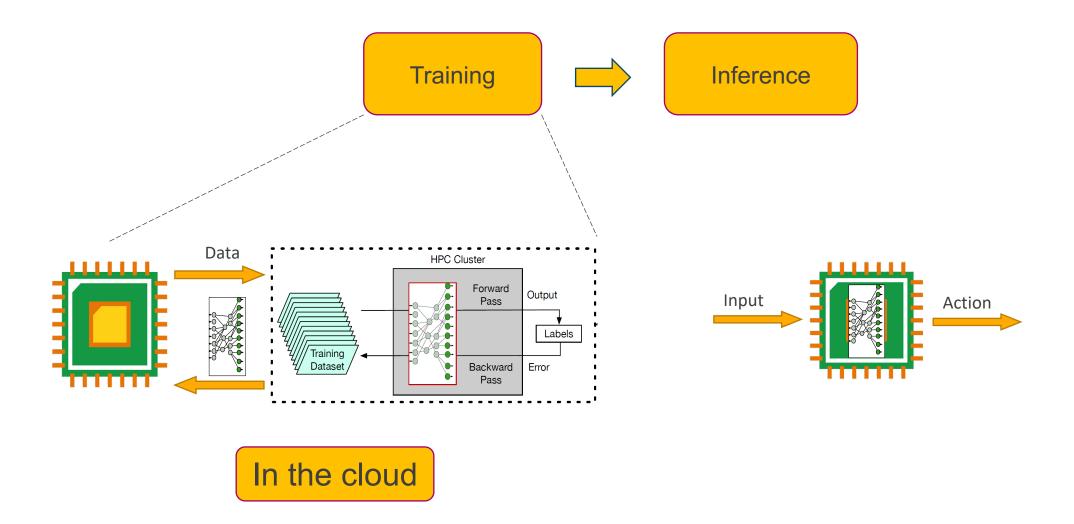
Using AI to train at the edge is critical for IoT implementations, especially as they scale. But the sheer horsepower of the cloud means the two should go hand in hand.

It's no surprise that the Internet of Things is growing rapidly. Each time an enterprise undertakes an IoT implementation, hundreds or perhaps thousands of new devices are added to the tally. And each time an implementation is successful, exponential growth is often seen as companies grasp the value

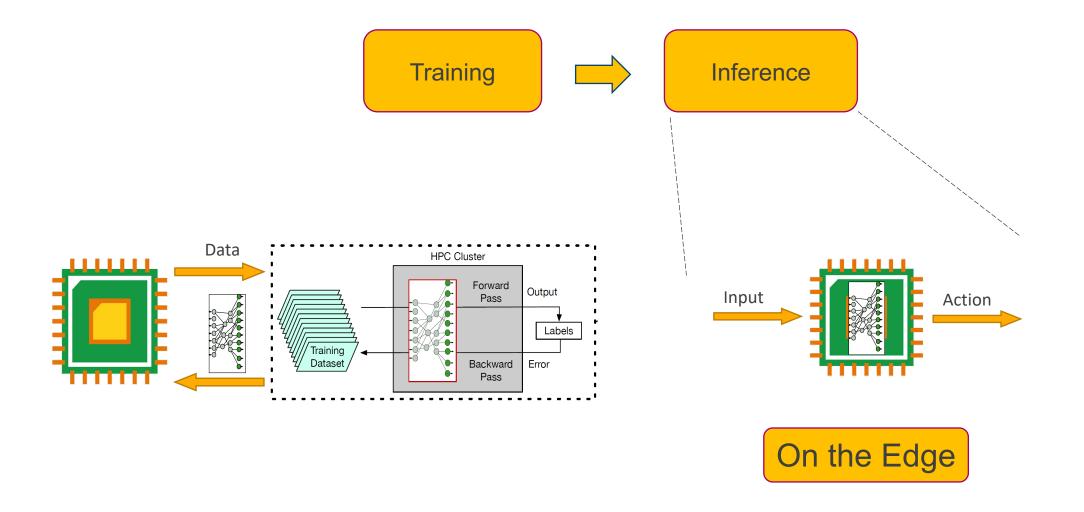
Outline

- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

The A.I. at edge landscape



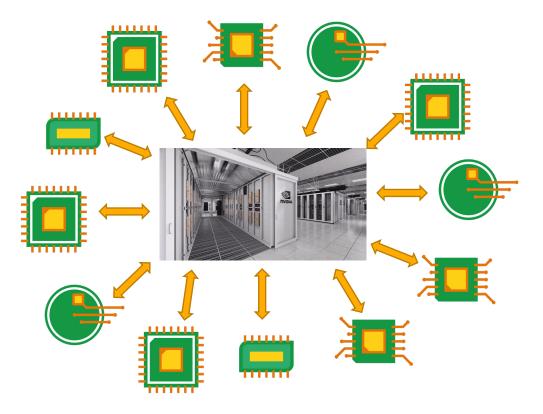
The A.I. at edge landscape



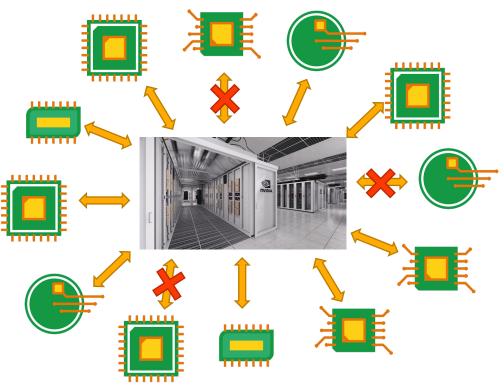
Outline

- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

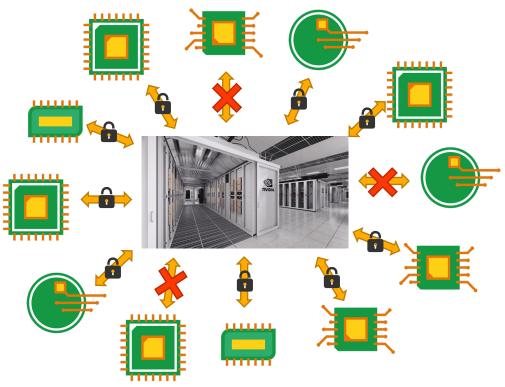
• Limited uplink and downlink bandwidth to the cloud



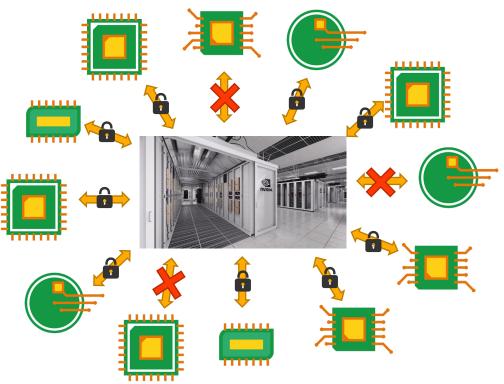
- Limited uplink and downlink bandwidth to the cloud
- Constant connectivity to the cloud



- Limited uplink and downlink bandwidth to the cloud
- Constant connectivity to the cloud
- Privacy and Security



- Limited uplink and downlink bandwidth to the cloud
- Constant connectivity to the cloud
- Privacy and Security

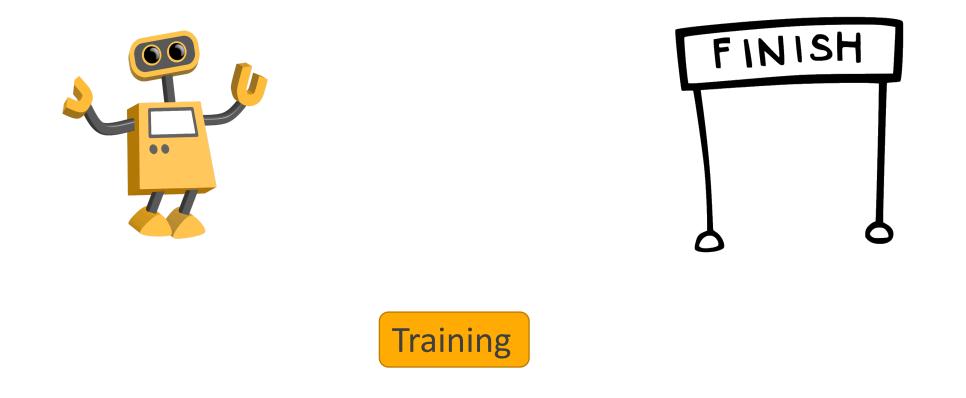


Solution: Train at the edge

Outline

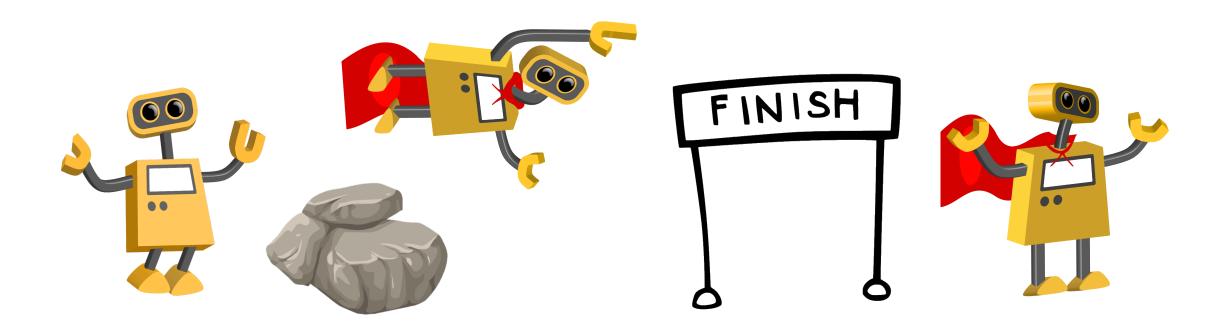
- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

• The environment at the edge can change rapidly



• The environment at the edge can change rapidly

• The environment at the edge can change rapidly



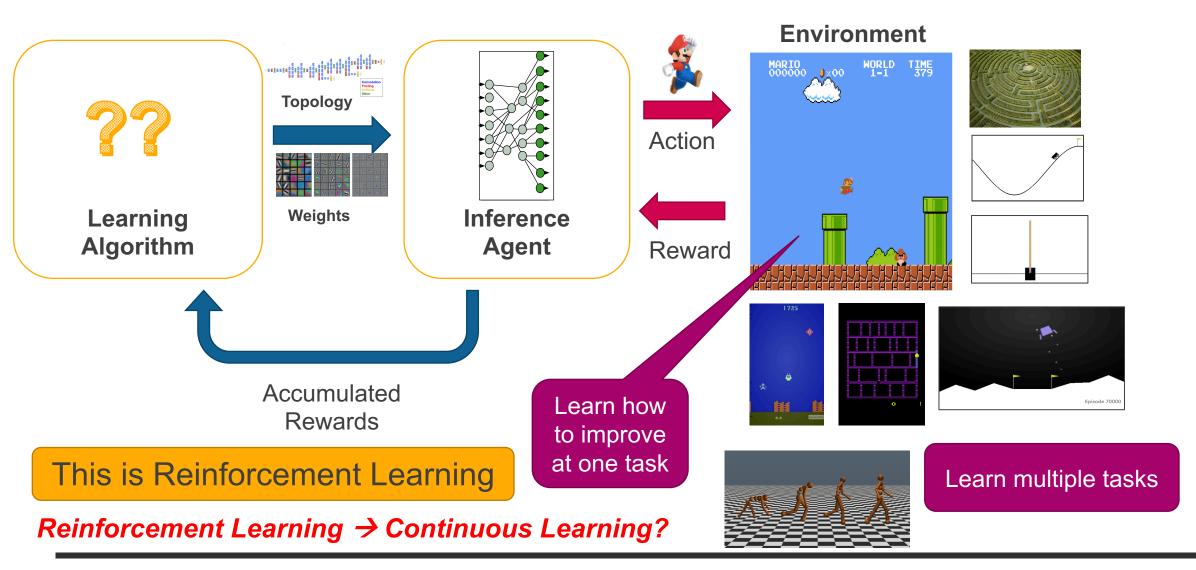
Learn new skill – Continuous learning

- The environment at the edge can change rapidly
 - Needs continuous learning
- Limited Compute and memory at the edge
 - Needs to fit in the hardware budget at the edge
- No mechanism to label collected data
 - Needs ability to process unlabeled and unstructured data

Algorithms for Learning at the edge

	Data	Hyper-param Tuning	DNN Plasticity	Compute	Memory
Supervised DL	Labeled	Manual X	Designed for one problem	Backprop (gradients)	Backprop (gradients)

Template for Continuous Learning



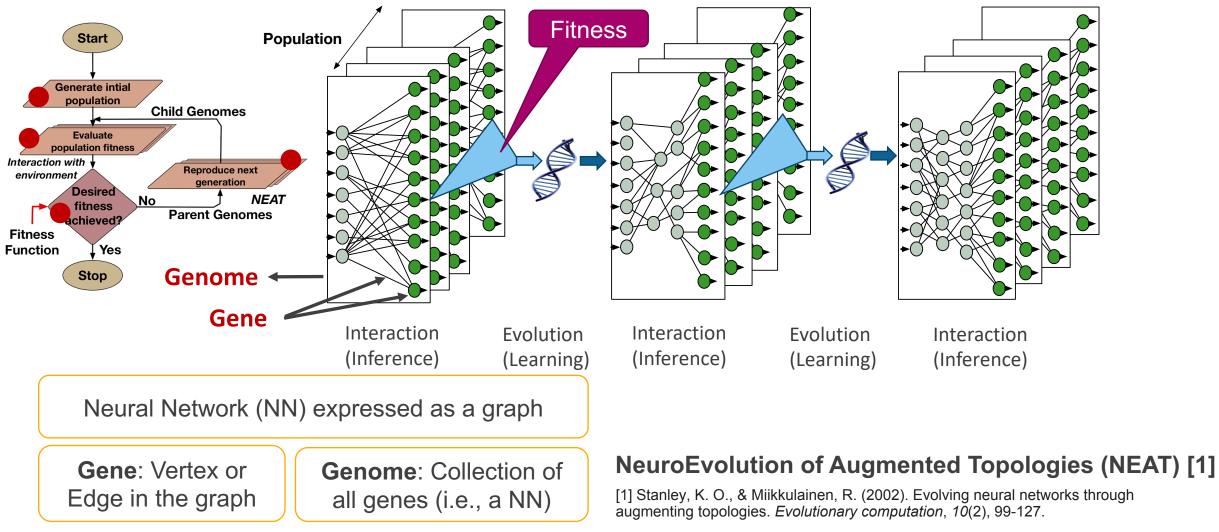
Candidates for Continuous Learning

	Data	Hyper-param Tuning	DNN Plasticity	Compute	Memory
Supervised	Labeled	Manual X	Designed for	Backprop	Backprop
DL	X		one problem	(gradients)	(gradients)
Reinforceme	Unlabeled	Manual	Reward	Backprop	Backprop
nt Learning		X	Function	(gradients)	(gradients)
	RL is not viable for continuous learning on the edge				

Outline

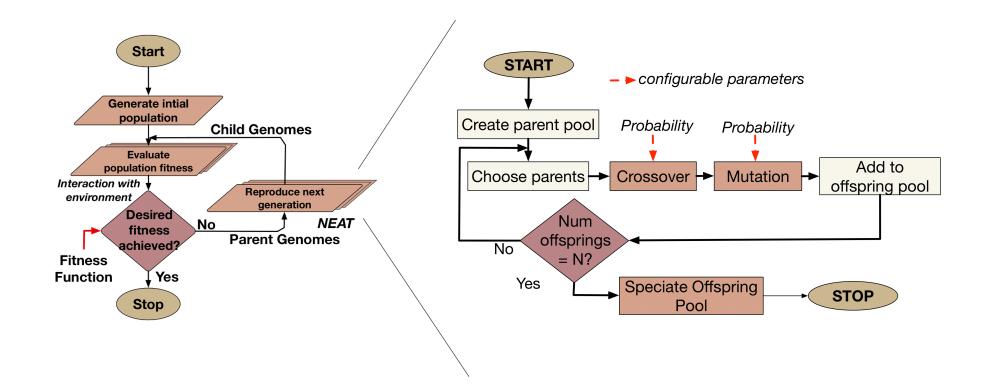
- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

Neuro-Evolutionary (NE) Algorithm



This slide adapted from – Samajdar et. al. GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware.

Neuro-Evolutionary (NE) Algorithm



NeuroEvolution of Augmented Topologies (NEAT) [1]

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary computation*, *10*(2), 99-127.

This slide adapted from – Samajdar et. al. GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware.

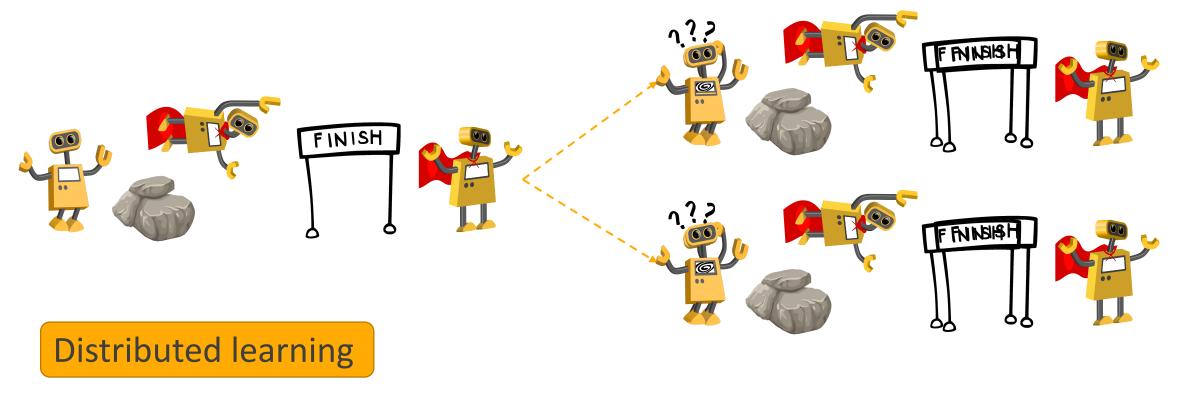
Neuro-evolutionary Algo \rightarrow Continuous Learning?

ISPASS 2020

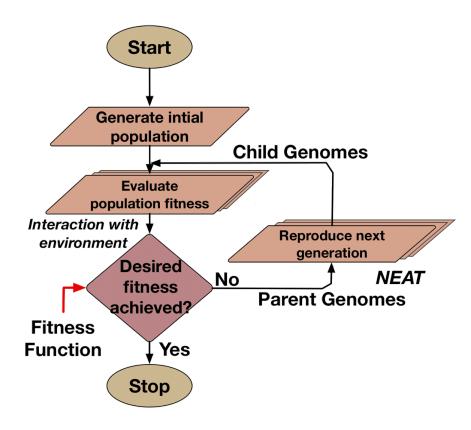
Learning Algorithms at Edge

	Data	Hyper-param Tuning	DNN Plasticity	Compute	Memory
Supervised DL	Labeled X	Manual X	Designed for one problem	Backprop (gradients)	Backprop (gradients)
Reinforceme nt Learning	Unlabeled	Manual X	Reward Function	Backprop (gradients)	Backprop (gradients)
Evolutionary	Unlabeled	Automated	Reward Function	Massive Parallelism	Only store model

- Is continuous learning enough?
- Edge devices often deployed in groups
- Can knowledge gained by one help the entire system?



Neuro-Evolutionary (NE) Algorithm



Could we scale NEAT at the edge?

NeuroEvolution of Augmented Topologies (NEAT) [1]

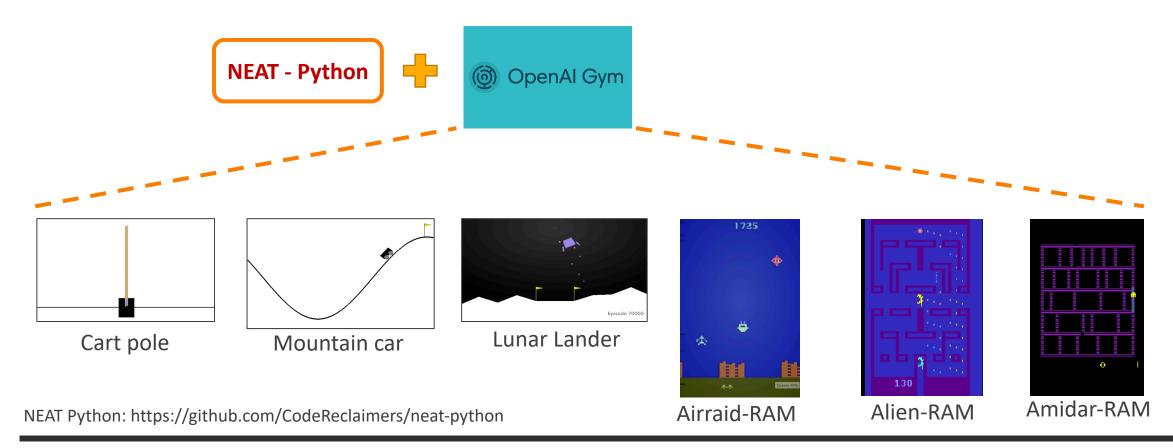
[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary computation*, *10*(2), 99-127.

This slide adapted from – Samajdar et. al. GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware.

Outline

- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

- Test bed with 15 Raspberry Pi
- Connected with 62.24Mbps local WiFi network

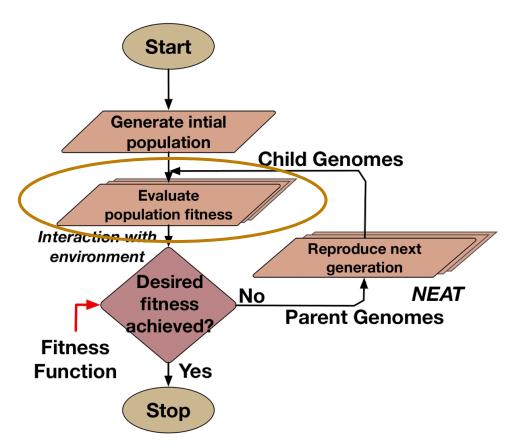


- Test bed with 15 Raspberry Pi
- Connected with 62.24Mbps local WiFi network
- Only fitness function is changed between workloads
- All workloads are run till convergence (or failure) multiple times
 - Multi-step inference Rewards accumulated over multiple time steps between each generation
 - Single-step inference Rewards from each action leads to a new generation

Outline

- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations
- Conclusion

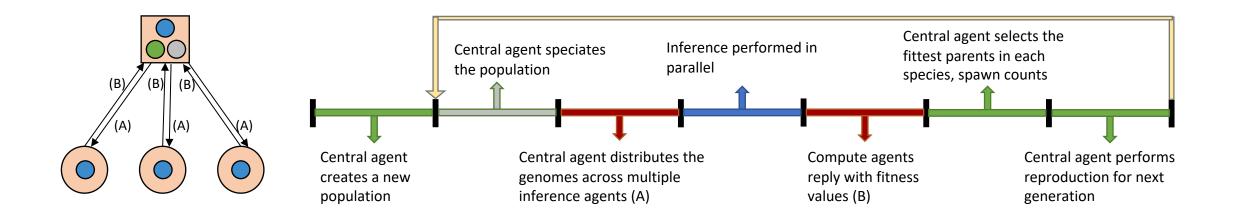
Neuro-Evolutionary (NE) Algorithm



NeuroEvolution of Augmented Topologies (NEAT) [1]

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary computation*, *10*(2), 99-127.

• Scaling Inference – Fitness Calculation

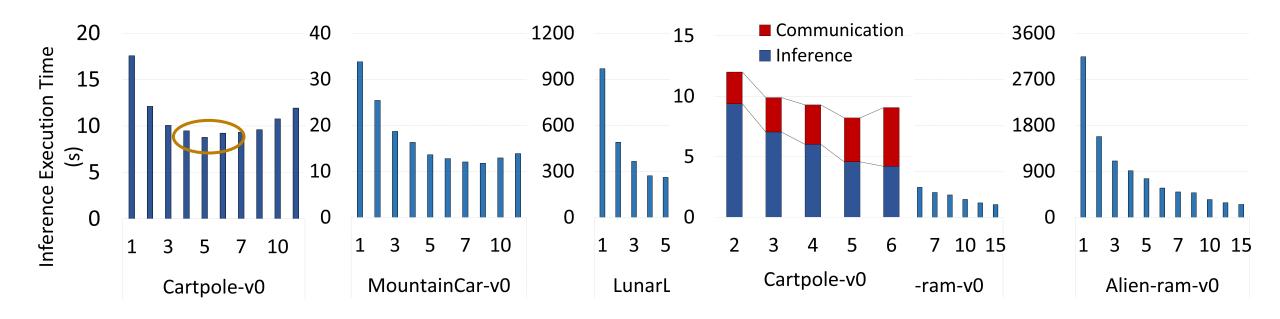


Reproduction

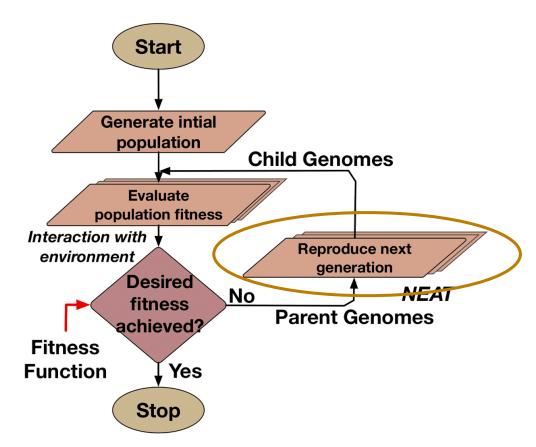
Speciation

Communication

• Scaling Inference – Fitness Calculation



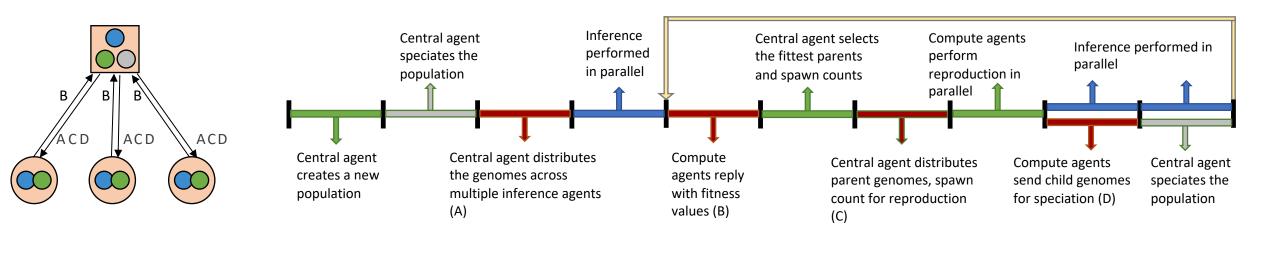
Neuro-Evolutionary (NE) Algorithm



NeuroEvolution of Augmented Topologies (NEAT) [1]

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary computation*, *10*(2), 99-127.

• Scaling Learning – Reproduction

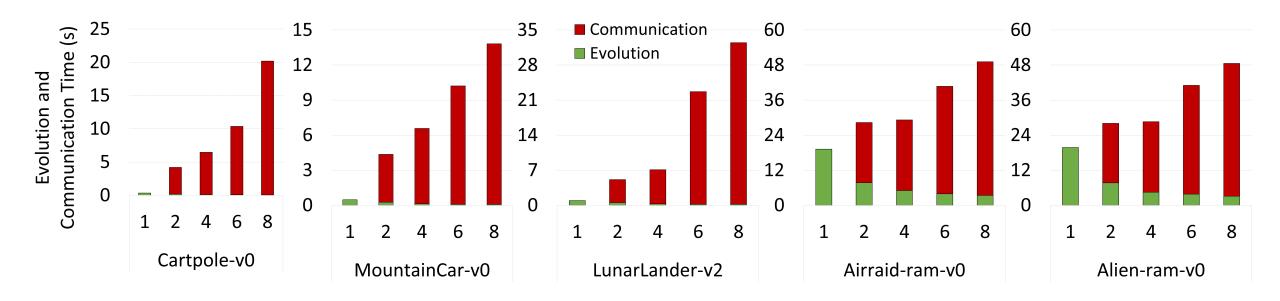


Reproduction

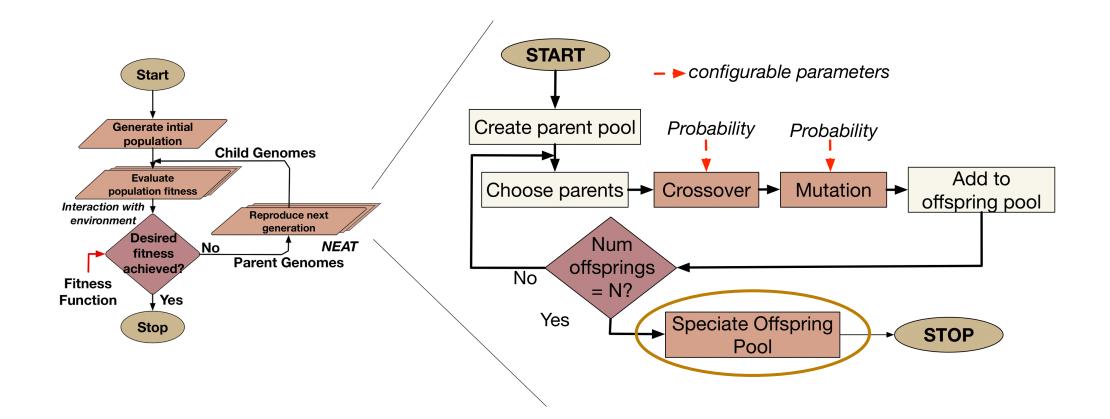
Speciation

Communication

• Scaling Learning – Reproduction



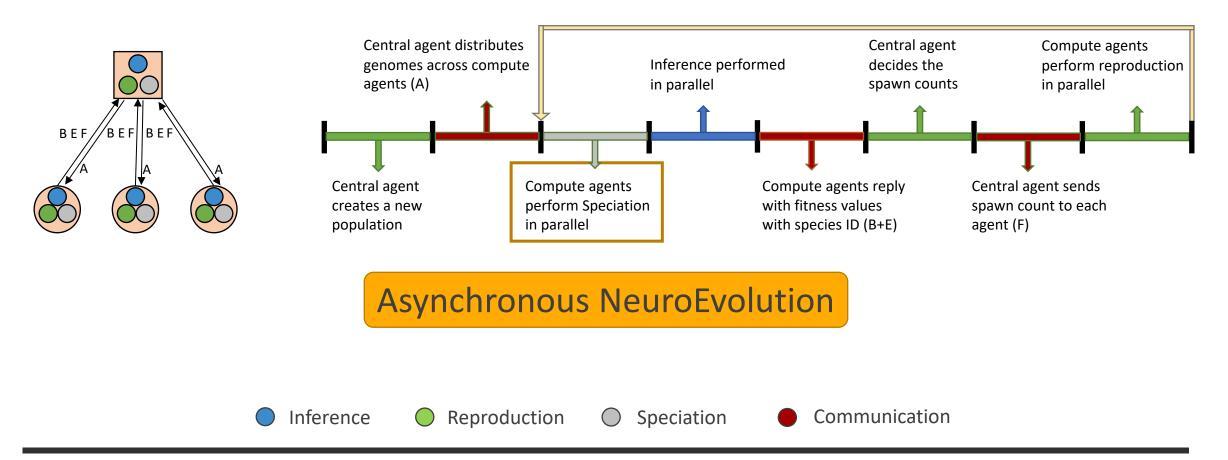
Neuro-Evolutionary (NE) Algorithm



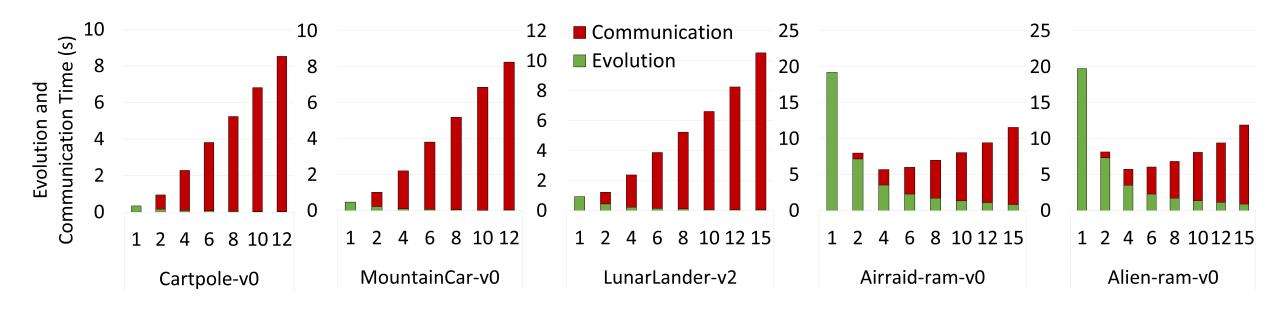
NeuroEvolution of Augmented Topologies (NEAT) [1]

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary computation*. *10*(2), 99-127.

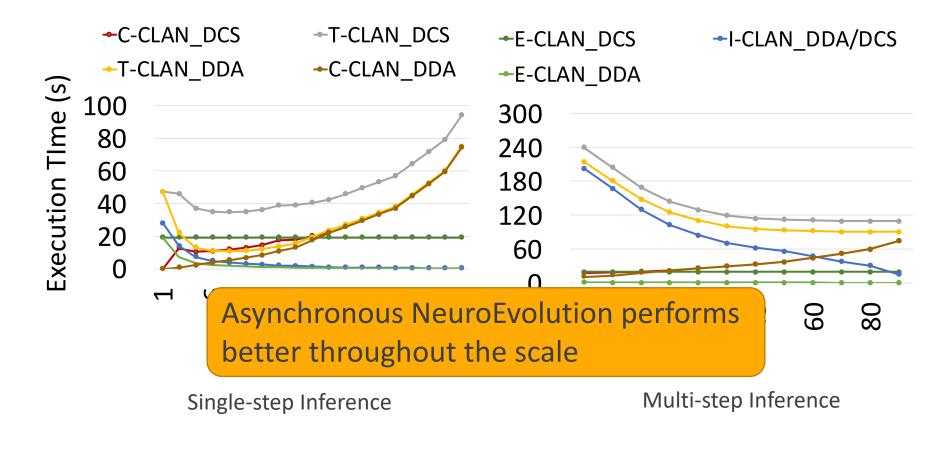
• Scaling Selection – Speciation and selection



• Scaling Selection – Speciation and selection



• Extrapolating Scalability

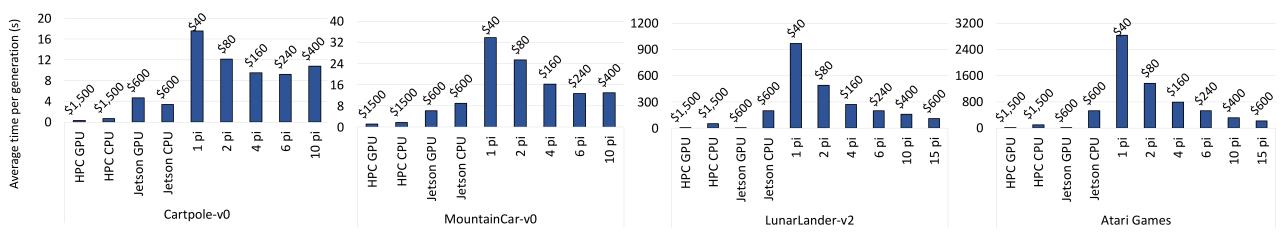


CLAN_DCS – Distributed Inference

CLAN_DDA – Distributed Asynchronous Speciation

• Performance per dollar

Platform	Processor	Cost
HPC CPU	6th gen i7	\$1500
HPC GPU	Nvidia GTX 1080	\$1500
Jetson Tx2 CPU	CPU ARM Cortex A57	\$600
Jetson Tx2 GPU	Pascal	\$600
Raspberry Pi CPU	ARM Cortex A53	\$40



Outline

- A.I. at edge landscape
- Challenges with the current landscape
 - Learning at the Edge
- Neuro-Evolutionary algorithms
 - Introduction to NEAT
- Scaling NEAT at the Edge
 - Setup
 - Design choices and Evaluations

Conclusion

Conclusion

- We demonstrate a system of agents running on Raspberry Pis learning collaboratively using neuro-evolutionary algorithms
- Proposed modifications to the algorithm allow
 - scaling to continue up to 65 Raspberry Pi nodes
 - showing a 2x performance improvement over naive scaling
 - reducing communication overhead by over 3.6x
- The proposed system using cheap Raspberry Pi hardware can outperform higher end computing platforms showcasing a Price-Performance Product benefit of 2.5x.