
ASTRA-SIM: Enabling SW/HW Co-Design
Exploration for Distributed DL Training Platforms

Saeed Rashidi∗, Srinivas Sridharan†, Sudarshan Srinivasan‡ and Tushar Krishna∗
∗Georgia Institute of Technology, Atlanta, USA

†Facebook, Menlo Park, USA
‡Intel, Bangalore, India

saeed.rashidi@gatech.edu, ssrinivas@fb.com, sudarshan.srinivasan@intel.com, tushar@ece.gatech.edu

Abstract—Modern Deep Learning systems heavily rely on
distributed training over high-performance accelerator (e.g.,
TPU, GPU)-based hardware platforms. Examples today include
Google’s Cloud TPU and Facebook’s Zion. DNN training involves
a complex interplay between the DNN model architecture, paral-
lelization strategy, scheduling strategy, collective communication
algorithm, network topology, and the end-point accelerator. As
innovation in AI/ML models continues to grow at an accelerated
rate, there is a need for a comprehensive methodology to
understand and navigate this complex SW/HW design-space for
future systems to support efficient training of future DNN models.
In this work, we make the following contributions (i) establish the
SW/HW design-space for Distributed Training over a hierarchical
scale-up fabric, (ii) develop a network simulator for navigating
the design-space, and (iii) demonstrate the promise of algorithm-
topology co-design for speeding up end to end training.

Index Terms—Distributed training; Collective communication;
Training parallelism; High performance training systems;

I. INTRODUCTION

Deep Learning (DL) and Deep Neural networks (DNN) are
driving the proliferation of Artificial Intelligence (AI) in a
wide range of application domains such as image classification,
natural language processing, and autonomous driving. As the
popularity and the use cases expand, AI researchers are seeking
to improve the capabilities and accuracy of DNNs by designing
deeper networks and training them using millions, if not
billions, of samples. However, these improvements come at
the expense of increased training time and/or memory capacity,
and hence drive the demand for scalable high-performance
training platforms.

DL Training platforms today are built by interconnecting
multiple accelerators together. Examples include Google’s TPU
that uses many TPUs interconnected in a 3D Torus [21],
Facebook’s Zion system [2] using CPUs and GPUs connected
via alltoall topologies, and NVIDIA DGX systems [24] that use
NVswitch to enable switch-based topologies. While numerous
studies have benchmarked DL training on some of these
training platforms [10], [14], [18], [25], [30], there is limited
or no work on broad design space exploration targeting future
platforms. Future platforms are expected to leverage emerging
accelerators (say a next-generation GPU or TPU) that we call
a Neural Processing Unit (NPU) for generality, connected via a
hierarchical network fabric, going all the way from on-package

http://github.com/astra-sim/astra-sim

Workload Parallelization Strategy

Compute
and

Memory
Design

Framework-level Scheduling

Communication Mechanism

Messaging/Transport Layer

Endpoint Design and Connectivity

Hierarchical Fabric Design and Topology

Communication Scheduling

Data, Model, Hybrid, Pipelined Parallelism

LIFO vs. FIFO, Fusion vs. Split

Topology-aware Collectives vs. Parameter Server

Sync vs. Async, Blocking vs. Non-blocking

TCP vs. ROCE, Two-sided vs. one-sided vs. RPC

links, BW per link, NPU/NMU shared bus

Flat vs. Hierarchical, 2D/3D/4D Torus vs. Switch

Fig. 1: DL training SW/HW design space

NPU

NPU NPU

NPU
M
E
M

M
E
M

M
E
M

M
E
M

N
M
U

N
M
U

N
M
U

N
M
U

Intra-package Fabric

Inter-package linksIntra-package linksNPU NMU shared bus

Inter-package Fabric

NAM 0

NAM 1

NAP

NAM 2

NAM 3

Inter-package Fabric

~1TB/s

~300GB/s

~1.3TB/s

Fig. 2: Hierarchical accelerator system

(MCM [3] or interposer) to on-rack (PCIe/NVlink) to across
racks (ethernet/infiniband). Our work is focused on enabling
researchers to quantify the research challenges involved in
designing a highly scalable hierarchical accelerator systems for
efficiently training future DNN models, and design efficient
SW/HW co-design solutions.

Figure 1 presents the SW/HW design space for distributed
DL training on future hierarchical DL accelerator systems and
is inspired by today’s DL training platforms. In this work, we
focus on what we define as the “scale-up" network - i.e., the
network connecting multiple accelerators hosted within a board
or rack [2], [24].

We approach this in two steps. First we establish a
comprehensive SW/HW design space for future accelerator
systems, shown in Figure 1, and present a holistic evaluation
methodology for enabling fast yet flexible and accurate ex-
ploration. Our infrastructure allows us to comprehend various
requirements spanning DNN model (e.g. number of layers,

21

21 21

21

21 21

NPU Intra-package scale-up

Inter-package scale-up Package

(a) Hierarchical 2D torus

21 21 21

Switch NPU Intra-package scale-up

Inter -package scale-up Package

(b) Alltoall
Fig. 3: Scale-Up topologies

size of GEMMs, etc.), DNN parallelism (e.g. data, model,
hybrid) and corresponding communication patterns, framework-
level optimizations (e.g. fusion vs. splitting messages, overlap
vs. no overlap, etc.), design/mapping hierarchical collective
algorithms, endpoint design (e.g. on-load vs. offload), fabric
design (e.g. number of links per tile, latency/BW per link, etc.),
fabric topology (e.g., pt-to-pt such as 2D/3D Torus vs. switch-
based), and finally the interactions between these individual
components.

Second, we present an end-to-end simulation methodology
called ASTRA-SIM (Accelerator Scaling for TRAining
Simulator), codifying the design-space described around a
network simulator (Garnet [1], [19]). We allow parameterized
descriptions of the DNN, system, and fabric, and enable end-
to-end simulation of a DNN training loop. To demonstrate
the power of our tool, we run case studies studying the
effect of network topologies on the performance of collective
communication algorithms, and also study the detailed compute-
communication breakdown for a distributed training of ResNet-
50 [16].

In particular, we make the following novel contributions:

• Establish the SW/HW design space for hierarchical
accelerator fabric design space exploration and identify
key bottlenecks in scaling DL workloads.

• Develop an end-to-end network simulator, called ASTRA-
SIM , for evaluating various aspects of the design space

• Present comprehensive analysis of 1D, 2D, and 3D
topologies for all-reduce and all-to-all collectives for
alltoall and Torus topologies using ASTRA-SIM .

The rest of the paper is organized as follows: Section II
provides some background, Section III establishes the broad
design space for DL training platform exploration. We present
our simulator in Section IV. Section V describes the analytical
and simulation results. We conclude the paper in Section VII.

II. BACKGROUND - DL TRAINING

The process of supervised training is adjusting the weights
of a predictor ŷ = F(x,w) (with the output ŷ,weight w, and
input x) with respect the data-set of samples D = y∗,x (where
y∗ is the ground truth corresponding to each input data x)
in a way that minimizes the difference between the ŷ and
the ground truth y∗ for each sample x [29]. This is usually
done by forming a loss function over D, LD(y∗,F(x,y)) that is
differentiating between the ground truth and predictor output,
and then trying to minimize the loss function by the iterative
gradient-descent method. Mathematically, this means finding
the gradients of the loss function with respect to the weights
∂LD
∂w (called weight gradients) and then, updating the weights

using gradient-descent on each iteration.
DNNs are special kinds of predictors that consists of many

layers such as convolutional, fully connected, sub-sampling,
and so on. The DNN training task consists of a layer-wise
procedure with three different phases: (i) forward-pass, (ii)
weight gradient computation, and (iii) input (error) gradient
computation. The process begins with the forward pass for each
sample data, the output activations of each layer is computed.
This is followed by the back-propagation process that starts
from the last layer and goes backward to compute the weight
gradient and input gradient of each layer for all samples in
B. Finally, the computed weight gradients update the existing
weight values using gradient descent.

Distributed Training. When it comes to parallelizing the
training task across multiple nodes (e.g. NPUs), two main
questions arise: (i) how to synchronize the weight updates?
(ii) how to distribute the parameters (e.g. training data,
model parameters) across different nodes? The most common
approach used to address the first question is called synchronous
training, where each node works on its own data and produces
its local gradients, which are then accumulated/reduced across
all or a certain number of nodes to update the weights before
the next iteration can start. The answer to the second question
depends on the parallelization strategy employed, as discussed
later in Section III-A.

III. SW/HW CO-DESIGN AND SCALING CHALLENGES

In this paper, we consider a future DL training platform com-
prising of multiple Neural Accelerator Packages (NAP) (e.g.
NVIDIA V100 GPU, Google TPU [21], etc.) interconnected
via a dedicated scale-up fabric. Figure 2 presents a high-level
system design of a NAP with four Neural Accelerator Modules
(NAM) integrated through multi-chip packaging technology

TABLE I: Different parallelism approach communications

Parallelism Activations during
the forward pass

Weight
gradients

Input
gradients

Data
Model
Hybrid partially partially partially

[28]1. Each NAM consists of a massively parallel compute
engine; henceforth called Neural Processing Unit (NPU); high-
bandwidth memory (e.g. HBM), and a Neural Messaging Unit
(NMU). NMUs play the role of a traditional Network Interface
Card (NIC) but simpler and purpose-built for accelerator
fabrics. The hierarchical scale-up fabric comprises of very high
bandwidth intra-package NAM links for module-to-module
communication within package (∼500GB/s [28]) and longer
distance inter-package NAP links (∼25 GB/s per link [6]) for
enabling communication spanning multiple chassis or racks.
Figure 3 shows example scale-up topologies.

As shown in Figure 1, distributed DNN training involves a
complex inter-dependent SW/HW design-space. To best of our
knowledge this is the first effort to systematically explore this
vast design space for end-to-end-training for future accelerator
system designs.

A. Parallelization Strategies

The common parallelization techniques for partitioning work
across multiple nodes, are data parallelism (replicating the
entire model, model parallelism (splitting the model), pipelined
parallelism, or some combination of these. In data-parallel,
each node is assigned a subset of samples and during each
iteration, works on its minibatch (chosen from its own dataset)
to produce the local gradients. In model parallel, the nodes
have the same data-sets and work on the same minibatch,
but since the model is divided, each model is responsible
for a portion of model gradients. In, hybrid-parallel, nodes
are divided into different groups and the training within the
group is data-parallel/model-parallel while between groups is
model-parallel/data-parallel.

The different parallelism approaches have different indi-
cations in terms of communication patterns between the
nodes. Table I shows when data should be exchanged for
different parallelism approaches. In data-parallel approach,
weight gradients should be exchanged among all nodes since
each node calculates the gradients over a subset of the inputs
and hence, the gradients of all nodes should be accumulated to
generate the updated weights for the next step. In model-parallel
scheme, each node produces a part of the output activations and
input gradients during the forward pass and back-propagation,
respectively. Hence these values must be communicated across
all nodes. The hybrid parallel is in between the data-parallel
and model-parallel and its communication behavior is in
the middle as well. Consequently, the nodes within a data-
parallel/model-parallel group in the hybrid-parallel have the

1Our classification is not limited to accelerators and can be extended to
CPUs as well - a CPU socket is a NAM and a multi-socket system is a NAP.

Reduce
-scatter

All-gather

Node
0

Node
1

All-to-al l

Al l-reduce

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Node
0

Node
1

Node
2

Node
3

Fig. 4: Overview of collective communication operation used in DNN
training networks.

Node 0

Node 1Node 3

Node 2

0

123

0

1

2

30

1

2

3

0 1

2

3

Node 0

Node 1Node 3

Node 2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Fig. 5: The first step of reduce-scatter in a ring topology (left) and
alltoall topology (right) with 4 nodes

same communication pattern as the data-parallel/model-parallel
schemes.

B. Collective Communication Mechanisms

As Table I indicates, different communications are initiated at
different phases for different parallelism approaches. However,
all of these communications are handled by using some set
of collective communication operations described in Figure
4. Collective communications refer to a set of operations in
which multiple nodes participate in data exchange to perform
a certain operation over the data. In general, four different
collective communication algorithms are the main contributor
in DNN training communication: (i) reduce-scatter, (ii) all-
gather, (iii) all-reduce, and (iv) all-to-all. Figure 4 shows the
initial state and the final state for an example of four nodes
participating in the collective communication. Among these
operations, all-reduce has the most frequent usage and can
be done using a reduce-scatter followed by an all-gather. The

usage of all-to-all is specific to some certain DNNs that has
distributed key/value table across the nodes.

The efficient way of performing the collective communi-
cation is topology dependent and in the recent years, many
proposals suggested specialized collective communication
algorithms for specific topologies [11], [22], [23]. Here we
briefly describe how collective algorithms work on ring and
alltoall topologies since they act as the the building blocks for
the modern topologies observed in the training configurations
as well as our proposed hierarchical topology.

Figure 5 shows the first step in reduce scatter for both the
ring and alltoall topologies. In both cases with N nodes (here
N=4), the data is partitioned into 4 messages. In the case of
ring, during the first step, the node i sends data i to the next
node and receives data (i−1)mod N from its previous node.
After receiving, it adds the received data with its corresponding
local data and again sends it out to the next node. This process
takes N −1 steps and after that, each node has one data that
is globally reduced. The all-gather process, like reduce-scatter,
takes N −1 steps but it does not contain any local-reduction
and each node simply relays its received data to the next node.
The all-to-all collective on the unidirectional ring is composed
of (N-1) steps. In each step i, the NPU sends a message to
its neighbour with the distance of i and receives a message
from its neighbour with the distance of i. Each message that
the node sends to a destination, contains the data that belongs
to that destination node in the all-to-all collective.

In the case of alltoall topology, each node, say node i, initiate
the process by sending its data j to node j and receiving data
i from all other nodes at the same time. As an example, in
Figure 5, node 0 sends its data 1,2, and 3, to nodes 1,2, and 3
respectively and receives nodes 0 from all other nodes. Then,
each node reduces the received data with its local data and
produces one data that is globally reduced. The all-gather is
done simply by each node broadcasting its data to all other
nodes. All-to-all is the same as reduce-scatter without any local
reduction. In both topologies, the all-reduce, as mentioned
before, is a reduce-scatter followed by an all-gather.

C. Hierarchical Fabric Design and Topology

By leveraging the primitive topologies discussed in earlier
sections, it is possible to create more complex hierarchical
topologies discussed in the previous sections. Given the large
design space, we limit the fabric topology in this study to
3D torus (inspired by Google’s TPU platform [21]) and all-
to-all (inspired by Facebook’s Zion platform [2]). Expanding
this study to other scale-up topologies such as 4D/5D torus,
switch-based, etc., should be straight-forward and will be
explored as part of future work. Figure 3 shows how we
can extend the ring topologies to create a hierarchical Torus
and all-to-all topologies. Figure 3a shows a hierarchical torus
topology with three dimensions: local, vertical , and horizontal.
Each dimension simply contains one or many rings. The
local dimension is made of fast and high bandwidth intra-
package links that create one or more unidirectional rings.
The horizontal and vertical dimensions are made of inter-

package links, creating one or more bidirectional rings that
connect NPUs, with the same number in the package, across
different packages. Each bidirectional ring is divided into two
unidirectional rings. In the Figure 3a, the local dimension
size=2, vertical dimension size=3, and the horizontal dimension
size =2. In our terminology, the hierarchical torus is described
as the M×N×K where M is the local dimension, N is the
horizontal dimension, and K is the vertical dimension. Hence,
the size of the topology in Figure 3a is 2×2×3.

In Figure 3b, a traditional alltoall topology is extended by
adding a local dimension consisting of the high bandwidth rings.
In addition, switches enable the alltoall connectivity between
the NPUs across different packages. In this configuration, there
might be one or more global switches (two in Figure 3b) and
each NPU is connected to all of the global switches using inter-
package links. In the hierarchical alltoall topology, a system
size is described by M×N where M is the local size and N is
the alltoall size (i.e. the number of packages). In Figure 3b,
the size of the network is 2×3.

D. Multi-phase Collectives

Due to the hierarchical nature of the topologies described
so far, the collective algorithms also need to be updated to
work efficiently on the hierarchical networks. This is typically
done by making the collective algorithms be multi-phase and
each phase working on a specific dimension. This provides
a convenient way to pipeline the collectives and distribute
the different dimensions. In the case of all-reduce on the
hierarchical torus, a baseline approach is to perform the all-
reduce on the local dimension first, followed by all-reduce
in the vertical and then horizontal dimensions, respectively.
It is possible to leverage the asymmetric bandwidth of the
intra-package and inter-package links and enhance the baseline
algorithm by sending less traffic to the inter-package links that
have less bandwidth. It is done by first performing the reduce-
scatter on the local dimension, followed by the all-reduce on
the vertical and horizontal dimension and finally performing
the all-gather on the local dimension. The local reduce-scatter
distributes the job of all-reduce across different NPUs within
the same package and in the inter-package phases, the NPUs
with the same numbers work on the specific portion of the
data. The final all-gather phase then distributes the data among
all NPUs. The same procedure is applicable to enhance the
all-reduce on the alltoall topology. It is performed by reduce-
scatter on the local dimension, followed by all-reduce on the
alltoall dimension (NPUs with the same number in Figure 3b
work together), and finally all-gather on the local dimension.

The all-to-all collective can be adopted to have multiple
phases. For example, the hierarchical all-to-all on the hierarchi-
cal torus in Figure 3a has three phases starting from all-to-all
on the local dimension followed by all-to-all on the vertical and
horizontal dimensions. The all-to-all in each phase is a multi-
step operation as described earlier. However, in this case, in
each step, in addition to the data that belongs to the destination
node, the NPU also send all data that could be routed to
their final destination through that destination node during the

remaining phases. For example in phase 1 of the all-to-all in
Figure 3a, the NPU #1 send all data with destination #2 to
its local NPU #2, since those packets are able to reach their
destination through NPU #2 using the remaining vertical and
horizontal phases. This process continues for latter as well.
For the hierarchical alltoall topology, the all-to-all collective
has two phases: (i) all-to-all on the local dimension, and (ii)
all-to-all on the alltoall network. In phase 1, the NPUs use
the local dimension and perform ring all-to-all operation. In
each step of this phase, like torus, the message they send to
their destination contains all data that could be routed to their
destination through that NPU using the remaining all-to-all
phase on the alltoall dimension.

E. Communication Scheduling

Unlike model parallelism, in data parallelism there is
significant opportunity to overlap communication with compute.
Each node computes partial weight gradients for its mini-batch
in the back-propagation step in each layer and aggregates
these partial gradients across all nodes using an allreduce
operation. These aggregated weight gradients are used to
update the weights and only required right before the forward
propagation step for that layer in the next iteration. This
is captured in the compute to communication ratio and
relies on networking library/HW’s ability to asynchronously
progress communication and framework’s ability to schedule
communication to maximize compute-communication overlap.
While overlapping communication with computation across
layers is indispensable, the overheads of the first layer’s weight
gradient communication in data parallelism is fully exposed
given lack of useful compute to overlap communication. In
other words, while network bandwidth is critical for all other
layers, optimizing for network latency is essential for the
first layer since size of the weight gradients are typically
small(er). This motivates the need for further prioritizing and
completing the first layers communication operations before
communication operations from later layers even though they
were issued earlier. Similarly, in the case of model/hybrid
parallelism, activation communication must be prioritized as
they may block the next layer’s compute.

In summary, in this section we characterized the design-space
of distributed DL training over a scale-up fabric comprising
of intra-package and inter-package links.

TABLE II: Data granularity at different levels of ASTRA-
SIM execution

Granularity Size Constraint
Set Training Algorithm Training Algorithm

Chunk Parameter for Pipelining
Storage Element Size
(Area/Power)

Message
Proportional to the -
Number of Nodes Topology

Packet Link Technology Technology

Flit Network Buffer Size
Microarchitecture
(Area/Power)

Phit Link Width Technology

Scheduler

Workload

l ink

NI

Router

Dispatcher

Scheduling
Queue

Ready
Queue

Collectives Event queue

Topology

Training Loop

Sets

System

Network
(e.g. Garnet)

System
Parameters

Garnet
Parameters

A
ST

R
A

-SIM
N

etw
ork

Sim

u
lator

External DNN
compute

simulator (e.g.
SCALE-SIM) Compute

Times

DNN
Model

Workload
Parameters

Process

Communication
Detai ls

Fig. 6: Overview of ASTRA-SIM

IV. ASTRA-SIM

We present a network simulator called ASTRA-SIM for
modeling the design-space presented in Section III. ASTRA-
SIM is built on top of the Garnet [19] simulator (that comes as
part of gem5 [20]) to use its networking infrastructure. Figure 6
shows the high level overview of the simulator components. We
add two layers on top of the currently existing garnet simulator:
(i) Workload layer, and (ii) System layer. Garnet is operated
in a standalone manner [1]. ASTRA-SIM uses an event driven
execution model - we use a separate event queue implemented
in the system layer. The system layer then exposes its event
queue to the workload layer to schedule events.

A key feature of ASTRA-SIM is that it implements topology-
aware collective operations and different parallelism approaches
of training. It provides a high level interface to the user to
define new DNN models and simulate distributed training on
different network topologies and configurations. The simulator
then generates a detailed analysis regarding the communication
behaviour of the workload and the effect of communication
overhead on training. In addition, the software architecture
interfaces also allow the user to add new topology & collectives
operations. The current version implements the most common
topology/collective pairs.

ASTRA-SIM is highly portable, meaning that it can be ported
on top of any network simulator using a lightweight interface
that minimizes the change in the network side. Moreover, the
layer-wise training compute times can be calculated by any
DNN compute simulator that is able to find the compute delays
of GEMM operations in training (the green box in Figure 6).
More details on these parameters are provided in the next
section.

A. Workload Layer

The workload layer runs the training loop algorithm for
different networks and generates the sets of data to be
communicated at different steps of training.

Compute Model. For each layer, we run a compute model
to estimate the delay (in cycles) for the GEMM operation in

both the forward and backward passes. The compute model
can be any DNN accelerator or GPU simulator. Together with
the layer-wise communication size (during forward-pass and
back-propagation), parallelism approach and layer orders, these
information specify the characteristics of the training workload
and is fed to the workload layer as an input file. We provide
more details about the workload layer input format later in
Section IV-C.

In our simulations, we used an analytical DNN accelerator
simulator [12] to model a 256x256 TPU-like Systolic Array
accelerator, though it is possible to use alternate compute
models (e.g. [7], [13]) or a GPU simulator as well. Since the
DNN accelerator simulator we used computes only the GEMM
delay, we added additional parameterized delays to model the
rest of the DNN layer computations. We also accounted for
any stalls that would result due to limited DRAM bandwidth.

Communication Data Sizes. Table II shows the granularity
of data at different levels of the execution and factor that
determines the size. One collective operation is initiated by
generating a set. Each set is then divided into multiple chunks
and begins processing & scheduling of each chunk individually
and in a pipelined manner. The chunk itself decomposes into
multiple messages and the collective algorithm runs on the
message granularity. As an example, if the ring has four NPUs,
then, the chunk is divided into four messages for the ring
algorithm. The messages are decomposed into multiple packets
when they enter the network level. Each packet may contain
one/multiple flits and each flit is divided into one/multiple phits
when it is traversing the link.

B. System Layer

The systems layer is the interface to garnet and is responsible
for implementing the topology aware collective operations
and generating traffic to the network layer. The system layer
contains the scheduler component that pipelines the execution
of the collectives across the different links. The system layer
deals the logical topology, that might be completely different
from the actual physical network topology. This allows the
system layer to have its own illusion of the topology, and tune
the collective execution based on the logical topology. This
provides the flexibility to: (i) map a single logical topology
on different physical topologies and compare the results (e.g.
mapping a 3D logical topology on a 1D or 2D physical torus),
or (ii) map different logical topologies on a single physical
topology and compare the performance (e.g. map logical alltoall
and 3D torus on an arbitrary physical topology). In the the
default configuration of ASTRA-SIM , there is a one-to-one
mapping between the logical and the physical topologies.

Figure 7 shows the different components of the dispatcher
and how each component works. The scheduler keeps two sets
of queues: (i) ready queue, that maintains the queue of chunks
that are ready but not yet issued, and (ii) logical scheduling
queue (LSQ), that maintains a set of in flight (running) chunks
for a single phase of the algorithm. Since each LSQ is for
a single phase of the algorithm, the number of LSQs should
be at least equal to the number of phases in the collective

Logical scheduling queue (LSQ) 1

Chunk

Chunk

Chunk

ChunkChunkChunk

Chunk

2. Rescheduling
chunks after each
phase is finished

Chunk

Chunk

LSQ 2

LSQ 3

LSQ 4

Ready queue

1. Issuing chunks from
ready l ist to the network
to star t their fi r st phase

ChunkChunk

Cur rently active streams

Cur rently inactive streams

Fig. 7: The overview of the scheduler component and the two tasks
of the dispatcher

Parallelism Type
Number of Layers

Layer 1
Name
Compute Time: <Fwd Pass> <Input Grad> <Weight Grad>
Coll Comm Type: <Fwd Pass> <Input Grad> <Weight Grad>
Coll Comm Size: <Fwd Pass> <Input Grad> <Weight Grad>
Local Update Time:

Layer 2
Name
…

Fig. 8: Input file of the workload that describes the DNN and its
compute behavior

algorithm. However, it is possible to have multiple LSQs per
phase to further increase concurrency. In ASTRA-SIM ’s default
setting, the number of LSQs per phase is determined by the
maximum number of chunks that could traverse the network
using different dedicated links for that phase. For instance, if
the horizontal dimension of a torus has two bidirectional rings,
four LSQs are created for the horizontal phase of all-reduce
on that phase, each one is dedicated to one uni-directional ring
in that phase. In the case of alltoall topology, the number of
global switches determine the number of LSQs for the alltoall
dimension (the local dimension is treated as torus).

As Figure 7 shows, the dispatcher is responsible for issuing
the chunks from ready queue to the LSQ and rescheduling the
chunks among the LSQs once the current phase of the chunk
is finished. The scheduler tries to interleave the execution of
chunks within the same queue to fully utilize the bandwidth. In
order to find out when to issue from ready queue, the dispatcher
keeps track of the current active chunks at their first phase,
if they fall below a certain threshold T, the dispatcher issues
P new chunks from the ready queue. By implementing the
collective operations, the system layer provides the collective
APIs to the workload layer.

C. ASTRA-SIM Parameters

Table III shows the different simulator parameters at the
workload, system and network layers. Parameter #1 determines
the name of the input file that describes the network. Figure
8 describes the format of this input file. It specifies the
parallelism approach (e.g. data parallel, weight parallel), the
total number of layers in the DNN, and the compute time (see
Section IV-A), collective communication type (all-to-all, all-

TABLE III: ASTRA-SIM Input Parameters

Parameter name Level Value Comment

1 DNN_name Workload string
The input name of the file
describing the DNN compute times
and communication sizes

2 num-passes Workload int
The number of forward/backward
iterations for simulation

3 algorithm System
baseline/
enhanced

The collective communication
algorithm

4 num-npus System int The total number of NPUs
5 num-packages System int The total number of packages

6 package-rows System int
The number of rows in the 2D
torus

7 scheduling-policy System LIFO/FIFO
defines the order in which the
collectives are executed

8 topology System
Torus2D/
AllToAll The logical topology of the network

9 local-rings System int
The number of local rings for
the local dimension in the
logical topology

10 vertical-rings System int
The number of vertical rings for
the vertical dimension of the logical
2D torus

11 horizontal-rings System int
The number of vertical rings for
the horizontal dimension of
the logical 2D torus

12 global-switches System int
The number global switches
int the alltoall logical
topology

13 endpoint-delay System int
The endpoint delay constant
delay after receiving a message

14 packet-routing System
hardware
/software

The way packets are routed in the
the network

15 injection-policy System
aggressive/
normal

How many messages should be
injected in the case of hardware
routing.

16 preferred-set-splits System int
The preferred number of the chunks
each set should be divided into

17 local-link-efficiency Garnet int

The ratio between
data-flits and
(data-flits+header-flits) on
the intra-package links

18 package-link-efficiency Garnet int
The ratio between
data-flits and (data-flits+header-flits)
on the inter-package links

19 flit-width Garnet int The size of flits to be simulated

20 local-packet-size Garnet int
The size of the intra-package
packets

21 package-packet-size Garnet int
The size of the inter-package
packets

22 tile-link-width Garnet int The width of the intra-package links
23 package-link-width Garnet int The width of the inter-package links
24 vcs_per_vnet Garnet int The number of the VCs per vnet
25 router-latency Garnet int The latency of routers

26 local-link-latency Garnet int
The latency of the intra-package
links

27 package-link-latency Garnet int
The latency of the inter-package
links

28 buffers-per-vc Garnet int The number of the buffers per vnet

reduce), size (computed from the layer dimensions) and local
update time (i.e., the average time per 1KB of data it takes
to process/reduce the communicated data after the forward-
pass/input-gradient/weight-gradient communication is finished
for that layer).

We do not describe the details of the rest of the parameters
in Table III in the interest of space, but provide these details
in the README of the tool’s github page.

V. EXPERIMENTAL RESULTS

This section is organized as follows: we begin by comparing
alltoall and Torus topology for 8 NAPs (or packages) with one
NAM per NAP i.e. 1D topology in Section V-A. We expand
this to 64 packages and compare 2D/3D Torus topologies
in Section V-B. Both these studies use one NAM per NAP
and is representative of today’s accelerator designs where the
inter-package links are the same bandwidth (i.e. symmetrical).

TABLE IV: System Parameters

Parameter Values
Intra-package

Packet size 512 Bytes
Per link BW 200 GB/s
Link latency 90 cycles

Number of rings 2 (unidirectional)
Link efficiency 94%

Inter-package
Packet size 256 bytes

Per link BW 25 GB/s
Link latency 200 cycles

Number of rings 2 (bi-directional)
Link efficiency 94%

NPU and NMU parameters
Compute Accel. 256x256 TPU-like

Flit width 1024 bits
Router latency 1 cycle

VC/VNET 50
Message size 512B

Endpoint delay 10 cycles
Buffers per VC 5000

Fig. 9: 1D Topology: alltoall vs. Torus comparison
Section V-C introduces the benefits of having an asymmetrical
and hierarchical topology with high bandwidth within a
package; representing future accelerator designs with multi-chip
packaging technology. Section V-D the benefits of asymmetric
hierarchical topologies as we scale from 8 packages to 64
packages. We conclude with end-to-end Resnet-50 analysis in
Section V-F.

Table IV describes the key simulation parameters used in
our experiments. The message sizes for all-to-all and all-reduce
collectives are based on typical sizes we observe in today’s DL
workloads such as Facebook’s Deep Learning Recommendation
Model [17] and Resnet-50 [16]. For the sake of consistency,
we use the bandwidth test for comparison and assume software-
based routing. In the interest of space, the results focus more
on highlighting ASTRA-SIM capabilities and where possible
describe the trade-offs of different solutions under consideration.
A detailed study on specific system design recommendations

Fig. 10: Impact of 2D/3D Torus Topology

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

3-phase Algorithm
Symmetric Topology

3-phase Algorithm
Asymmetric Topology

4-phase Algorithm
Asymmetric Topology

C
om

m
un

ic
at

io
n

Ti
m

e
(u

s)

Fig. 11: Impact of Hierarchical Topology
for DL training will be presented in future.
A. Impact of 1D Topology

Figure 9 presents the communication time for all-to-all and
all-reduce collectives on 1x8 alltoall topology (i.e. 1 NAM per
NAP and 8 NAPs connected via alltoall topology) and 1x8x1
Torus topology (i.e. 1 NAM per NAP and 8 NAPs connected via
1D ring topology). Each NAM has 8 links with one link per peer
NAM for alltoall topology (through 7 global switches, leaving
1 link unused) and four links per peer NAM for Torus topology
(1D ring). In the case of all-to-all collective, alltoall topology
always outperforms the Torus topology, although as the message
size increases the performance difference between the two
topologies shrinks. In the case of all-reduce, Torus topology
performs better as we increase the message since because the
alltoall topology uses only 7 of the 8 links. Further, alltoall
topology has higher queuing delays given a single link between
a pair of peers. On the other hand, Torus topology supports
multiple rings and is bandwidth optimal since it supports better
pipelining across chunks.

B. Impact of 2D/3D Torus Topology

Figure 10 presents the impact of 2D/3D Torus topologies
at 64 packages for all-reduce collective with symmetric links
(i.e. links with same BW) and running the baseline algorithm.
Adding extra dimensions without increasing the number of
links or BW per link results in: (a) lower average number of
hops per ring dimension (positive effect), and (b) depending
on the algorithm, it may increase the total amount of data a
node sends out because the number of steps in the algorithm

(a) Communication Time in micro-seconds

(b) Communication Time breakdown
Fig. 12: Scaling on Torus topology

increases (negative effect). Going from 1x64x1 to 1x8x8 (i.e.
1D to 2D Torus), the number of hops decreases (63 vs. 2x7=14)
outperforms the negative effect of increased data sent out by
each node (126

64 N in 1X64X1 vs. 28
8 N in 1X8X8, assuming N

is the initial data size at each node). However, going from
1x8x8 to 2x8x4 results in worse overall time because of the
dominant effect of increased data size, while the phase with
longest latency (i.e. the latency bottleneck) remains constant
in both configurations (the ring with 8 nodes). In contrast,
going from 2x8x4 to 4x4x4 (3D topology) results in better
performance since the worst case number of hops goes down.
Note that 4x4x4 is even better than 1x8x8 for messages up
to 4MB. But from 4MB, messages are bandwidth bound and
having less data size to send out is beneficial (28

8 N in 1X8X8
vs. 36

8 N in 4X4X4). We observe similar behavior for all-to-all
collective.

C. Impact of Asymmetric Hierarchical Topology

Figure 11 presents all-to-all and all-reduce collective on a 64
module system with 4 NAMs per NAP and total of 16 NAPs,
i.e. four modules per package and sixteen packages. For the
asymmetric hierarchical system representative of future multi-
chip packaged accelerator design, we have two uni-directional
rings within the package and four bi-directional rings across
packages forming a 4x4x4 topology. The local link bandwidth
within a package is assumed to be 8x the inter-package links
for asymmetric system and 1X for symmetric case. The main
benefit of asymmetric hierarchical case arises from higher
bandwidth local rings being able to feed the inter-package links

0

500

1000

1500

2000

2500

3000

3500

4000

Em
be

dd
in

g Q
1

K1 V1
So

ftm
ax

1
Q

KV
1

Co
nc

at
1

Re
lu

1
X1

W
2b

2
la

ye
rn

or
m

1
Q

2
K2 V2

So
ftm

ax
2

Q
KV

2
Co

nc
at

2
Re

lu
2

X2
W

2b
2

la
ye

rn
or

m
2

Q
3

K3 V3
So

ftm
ax

3
Q

KV
3

Co
nc

at
3

Re
lu

3
X3

W
2b

2
la

ye
rn

or
m

2
Q

4
K4 V4

So
ftm

ax
4

Q
KV

4
Co

nc
at

4
Re

lu
4

X4
W

2b
2

la
ye

rn
or

m
4

Q
5

K5 V5
So

ftm
ax

5
Q

KV
5

Co
nc

at
5

Re
lu

5
X5

W
2b

2
la

ye
rn

or
m

5
Q

6
K6 V6

So
ftm

ax
6

Q
KV

6
Co

nc
at

6
Re

lu
6

X6
W

2b
2

la
ye

rn
or

m
6 fc

so
ftm

ax

EM Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Final

Ti
m

e
(u

s)

forward pass (fwd) comm total weight gradient (wg) comm total input gradient (ig) comm total

59
42

 u
s

59
42

 u
s

59
42

 u
s

59
42

 u
s

59
42

 u
s

59
42

 u
s

Fig. 13: Transformer layer-wise total raw communication time for two training iterations running on a 2X2X2 torus system. Since
the parallelsim approach is hybrid-parallel, the output activations, input gradients and weight gradients should be communicated.
Depending on the layer type and how model is split, some layers may not have communications.

0
200
400
600
800

1000
1200
1400
1600

 L
ay

er
 1

La
ye

r 2
La

ye
r 3

La
ye

r 4
La

ye
r 5

La
ye

r 6
La

ye
r 7

La
ye

r 8
La

ye
r 9

La
ye

r 1
0

La
ye

r 1
1

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

La
ye

r 1
5

La
ye

r 1
6

La
ye

r 1
7

La
ye

r 1
8

 L
ay

er
 1

9
La

ye
r 2

0
La

ye
r 2

1
La

ye
r 2

2
La

ye
r 2

3
La

ye
r 2

4
La

ye
r 2

5
La

ye
r 2

6
La

ye
r 2

7
La

ye
r 2

8
La

ye
r 2

9
La

ye
r 3

0
La

ye
r 3

1
La

ye
r 3

2
La

ye
r 3

3
La

ye
r 3

4
La

ye
r 3

5
La

ye
r 3

6
La

ye
r 3

7
La

ye
r 3

8
La

ye
r 3

9
La

ye
r 4

0
La

ye
r 4

1
La

ye
r 4

2
La

ye
r 4

3
La

ye
r 4

4
La

ye
r 4

5
La

ye
r 4

6
La

ye
r 4

7
La

ye
r 4

8
La

ye
r 4

9
La

ye
r 5

0
La

ye
r 5

1
La

ye
r 5

2
La

ye
r 5

3
La

ye
r 5

4

Ti
m

e
(u

s)

wg comm total

Fig. 14: Resnet-50 layer-wise total raw communication time for two training iterations running on a 2X4X4 torus system. Since
the parallelism is data-parallel, only weight gradients need to be communicated during the back-propagation.

faster. Only changing from symmetric to asymmetric topology
improves the performance significantly. It is possible to leverage
the asymmetric system bandwidth and further improve the
performance by using the four phase (enhanced) algorithm, as
shown int the Figure 11. The three phase (baseline) algorithm
performs three-level ring algorithm but the four-phase algorithm
performs an hierarchical all-reduce: reduce-scatter within local
dimension, all-reduce across two inter-package links, and all-
gather across local dimension. This helps reduce the volume
of data across inter-package links by 4x.

D. Impact of scaling on Torus topology

Figure 12 presents the total communication time, and the
breakdown for all-reduce collective as we increase the number
of modules from 8 to 64 in the Torus topology. Queue P0-P4
represents average queue delays at the different stages of 4-
phase algorithm (P0 is the delay of ready queue described in
Figure 7) and the Network P1-P4 represent average message
delays inside network during different phases of collective
algorithm. While communication time generally increases, in

Figure 12a, we observe a slower growth in latency from 2x4x2
(16 modules) to 2x4x4 (32 modules). In the case of 2x4x2, the
bottleneck is mostly the horizontal dimension (with 4 modules
in the ring). With changing to 2X4X4, the bottleneck dimension
size remains 4 (both horizontal and vertical dimension size are
4), but now the bottleneck is shifted to the vertical dimension
since it is traversed sooner than horizontal dimension in the
collective algorithm. This can be verified by observing that
P2 queue delay becomes the dominant factor for the 2X4X4
in Figure 12b. However, going from 2x4x4 to 2x4x8 creates
a new bottleneck (i.e. the dimension with 8 modules) and
thus increases the communication time. This observation also
demonstrates the importance of hierarchical torus topologies for
scaling to large number of modules. We can effectively increase
the size of the torus topology without incurring additional
overheads.

E. Workload High-Level Analysis

In this section, we provide a high level workload analysis
report for Transformer [8] and Resnet-50 [16] networks. In

348.3 us

0

10

20

30

40

50

60

70

80

 L
ay

er
 1

La
ye

r 2
La

ye
r 3

La
ye

r 4
La

ye
r 5

La
ye

r 6
La

ye
r 7

La
ye

r 8
La

ye
r 9

La
ye

r 1
0

La
ye

r 1
1

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

La
ye

r 1
5

La
ye

r 1
6

La
ye

r 1
7

La
ye

r 1
8

 L
ay

er
 1

9
La

ye
r 2

0
La

ye
r 2

1
La

ye
r 2

2
La

ye
r 2

3
La

ye
r 2

4
La

ye
r 2

5
La

ye
r 2

6
La

ye
r 2

7
La

ye
r 2

8
La

ye
r 2

9
La

ye
r 3

0
La

ye
r 3

1
La

ye
r 3

2
La

ye
r 3

3
La

ye
r 3

4
La

ye
r 3

5
La

ye
r 3

6
La

ye
r 3

7
La

ye
r 3

8
La

ye
r 3

9
La

ye
r 4

0
La

ye
r 4

1
La

ye
r 4

2
La

ye
r 4

3
La

ye
r 4

4
La

ye
r 4

5
La

ye
r 4

6
La

ye
r 4

7
La

ye
r 4

8
La

ye
r 4

9
La

ye
r 5

0
La

ye
r 5

1
La

ye
r 5

2
La

ye
r 5

3
La

ye
r 5

4

tim
e

(u
s)

fwd compute wg compute ig compute wg exposed comm

Fig. 15: Resnet-50 layer-wise compute and communication time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 L
ay

er
 1

La
ye

r 2
La

ye
r 3

La
ye

r 4
La

ye
r 5

La
ye

r 6
La

ye
r 7

La
ye

r 8
La

ye
r 9

La
ye

r 1
0

La
ye

r 1
1

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

La
ye

r 1
5

La
ye

r 1
6

La
ye

r 1
7

La
ye

r 1
8

 L
ay

er
 1

9
La

ye
r 2

0
La

ye
r 2

1
La

ye
r 2

2
La

ye
r 2

3
La

ye
r 2

4
La

ye
r 2

5
La

ye
r 2

6
La

ye
r 2

7
La

ye
r 2

8
La

ye
r 2

9
La

ye
r 3

0
La

ye
r 3

1
La

ye
r 3

2
La

ye
r 3

3
La

ye
r 3

4
La

ye
r 3

5
La

ye
r 3

6
La

ye
r 3

7
La

ye
r 3

8
La

ye
r 3

9
La

ye
r 4

0
La

ye
r 4

1
La

ye
r 4

2
La

ye
r 4

3
La

ye
r 4

4
La

ye
r 4

5
La

ye
r 4

6
La

ye
r 4

7
La

ye
r 4

8
La

ye
r 4

9
La

ye
r 5

0
La

ye
r 5

1
La

ye
r 5

2
La

ye
r 5

3
La

ye
r 5

4

Endpoint SW Queue P0 Queue P1 Queue P2 Queue P3
Queue P4 Network P1 Network P2 Network P3 Network P4

Fig. 16: Resnet-50 layer-wise communication time breakdown

0%

20%

40%

60%

80%

100%

2X2X2 2X2X4 2X4X4 2X4X8 2X8X8

Tr
ai

ni
ng

 ti
m

e

System dimension
Compute time Exposed communication

Fig. 17: Resnet-50 compute time and exposed communication time
ratio for different network sizes

Section V-F, we further breakdown Resnet-50 and provide more
detailed reports along with sensitivity analysis to demonstrate
the capabilities of ASTRA-SIM in reporting details at various
levels for real DNN workloads. Figures 13 and 14 present the
layer-wise total communication time spent for two training
iterations of Transformer and Resnet-50, respectively. The
network dimension for Transformer is a 2X2X2 torus system
while Resnet-50 network is a 2x4x4 Torus topology, both
with LIFO collective scheduling order and local mini-batch
size of 32. The parallelism approach for Resnet-50 is data-
parallel while Transformer training is hybrid-parallel (data-

2886.5 us
1443.3 us

721.6 us
360.8 us

6.1 us
348.3 us

469.7 us
638.4 us

0%

20%

40%

60%

80%

100%

0.5X 1X 2X 4X

Tr
ai

ni
ng

 ti
m

e

Compute power

Compute time Exposed communication
Fig. 18: Resnet-50 compute time and exposed communication time
ratio for different compute powers compared to the baseline

parallel across local and horizontal dimension, and model-
parallel across vertical dimension).

As Figure 13 shows, the communication latency of Trans-
former remains uniform across different layers (layers 1-6 are
the same structurally). This is because of strict communication
dependencies that exist on the hybrid-parallel approach. For
example, in forward pass, the output activation of a layer must
be finished to proceed to the next layer. The same dependency
exist for input gradients during the back-propagation. But
for the data-parallel approach, execution of collectives across
different layers can be overlapped during back-propagation.

This high-level analysis gives a rough estimation about
the efficiency of the system in handling communication.
However, two factors complicate this analysis. First, the total
communication time depends on the interplay between the
parallelism approach, communication size, computation time,
network performance, scheduling policy, chunk-size and so
on. Second, the communications are executing in parallel and
also overlapped with computation. Thus further investigation to
determine which factors are playing a major role needs more
detailed analysis, which we provide in the next section.

F. Resnet-50 Detailed Analysis

Figure 15 shows the layer-wise end-to-end time spent asso-
ciated with Resnet-50 analysis described in previous section.
In addition it shows the layer-wise exposed communication
latency (the yellow bar) that is the amount of communication
time that is not overlapped and the training algorithm is forced
to stop for such communications to be finished.

Figure 16 shows the layer-wise time breakdown for Resnet-
50 similar to Figure 12b. Interestingly, we observe similar
behavior for both FIFO and LIFO scheduling schemes and the
reasoning is as follows. At every cycle, the scheduler issues
16 new chunks from the ready queue if there are fewer than 8
chunks yet to complete phase 1 of the algorithm (over local
dimension). Now assume we are executing Layer 50. Given 8x
higher bandwidth in the local dimension and good compute-
communication overlap with input gradient compute Layer 50
and weight gradient compute of Layer 49, all chunks Layer 50
complete phase 1 of the collective algorithm before new chunks
from Layer 49 become available. This can be further validated
by inspecting the per-layer communication time breakdown
across different queue and network links. After few initial
iterations, the majority of delay is in Queue P2 waiting for
the scale-up fabric to complete previously issued chunks. In
a nutshell, the very high local bandwidth enforces in-order
execution and turns LIFO scheduling to behave similar to FIFO
scheduling.

Figure 17 shows the compute time and exposed communi-
cation time ratio of the Resnet-50 as the Torus dimensions
varies between 2X2X2 (8 NPUs) to 2X8X8 (128 NPUs). As we
expect, increasing the size of the system increases the exposed
communication ratio, from 4.1% in the 8 node system to 25.2%
in the 128 node system.

Figure 18 shows how the role of communication overhead
changes for various compute efficiencies. These kinds of analy-
sis are specially useful to predict the performance improvement
of next generation NPUs with higher performance and find
the point in which the communication becomes the bottleneck.
ASTRA-SIM allows. According to Figure 18, the exposed
communication is less than 1% when the compute power
is 0.5X of baseline. This is because there is enough time
for collectives to be completely overlapped with computation.
But at 4X compute power, 63.9% of the latency comes from
communication, resulting in diminishing effect of further
improving the compute efficiency.

In summary, ASTRA-SIM allows us to study various
scheduling policies, collective algorithms, and hierarchical
topologies for DL training.

VI. RELATED WORK

In recent years, many schemes proposed simulators and
designs to model and enhance communication between different
nodes, mostly targeting the scale-out network. For instance,
the concept of designing a NIC/protocol pair for offloading
the network tasks in the scale-out network has been proposed
by prior works [15], [27]. More specifically, Underwood et
al. [15] proposed designing a triggered based architecture that
will trigger collective communications based on listening to
the certain network events defined by the programmer. sPIN
NIC (proposed in [27]) allows the programmer to offload
packet handlers that processes different types of packets
upon arrival using available compute resources inside the
NIC. LogGOPSim [26] proposed a simulator that models the
collective communication based on the LogGP abstract model
[9]. Degomme et al. [5] models the MPI library collectives
on a distributed system. Compared to ASTRA-SIM , the main
difference of the previous schemes are: (i) They target scale-
out network while ASTRA-SIM targets the scale-up network,
(ii) ASTRA-SIM provides built-in support for implementing
different parallelism approaches and training loops.

In terms of collective algorithms, many works suggested
and examined different algorithms based on different model
assumptions. Thakur et al. [23] analyzed algorithms based
on the constant overhead between each two communicating
node. Chan et al. [11] extended the collective operations for
nodes with the ability to send/multiple messages. Patarasuk et
al. [22] introduced bandwidth efficient all-reduce for clusters
of workstations. However, these algorithms mainly targeted
the scale-out network or they analyzed the algorithms using
simplified assumptions for the systems that are not realistic in
the actual systems.

MCM-GPU [3] and Dally et al. [28] discussed the circuit
level techniques to enhance the memory bandwidth for deep
learning training/inference workloads. Arunkumar et al. [4]
proposed energy cost model for multi-chip scale-up design.
Energy-cost model could be integrated to our work and we
leave this to future work.

VII. CONCLUSIONS AND FUTURE WORK

This work introduces a simulator called ASTRA-SIM to
elaborate and navigate the HW/SW design-space of distributed
DL training platforms. We focus on detailed modeling of
collective communication algorithms over a hierarchical scale-
up fabric, and enable end-to-end network simulations. The tool
has been open-sourced. We also plan to extend it to a scale-out
fabric (modeling the transport layer, e.g., Ethernet) as part of
future work.

ACKNOWLEDGMENT

This work was supported by a Facebook Faculty Research
Award. We thank Srikant Bharadwaj from AMD for sharing

an updated version of Garnet that models both on-chip and
interposer/MCM networks, and Eric Qin from Georgia Tech
for sharing his analytical compute model.

REFERENCES

[1] Garnet2.0. http://synergy.ece.gatech.edu/tools/garnet/, 2017.
[2] K. Arnold. Application-specific hardware accelerators, Mar 2019.
[3] A. Arunkumar et al. Mcm-gpu: Multi-chip-module gpus for continued

performance scalability. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages 320–332, New
York, NY, USA, 2017. ACM.

[4] A. Arunkumar et al. Understanding the future of energy efficiency in
multi-module gpus. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 519–532, Feb 2019.

[5] A. Degomme et al. Simulating mpi applications: The smpi approach.
IEEE Transactions on Parallel and Distributed Systems, 28(8):2387–2400,
Aug 2017.

[6] A. Li et al. Evaluating modern GPU interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect. CoRR, abs/1903.04611, 2019.

[7] A. Samajdar et al. Scale-sim: Systolic CNN accelerator. CoRR,
abs/1811.02883, 2018.

[8] A. Vaswani et al. Attention is all you need. CoRR, abs/1706.03762,
2017.

[9] D. Culler et al. Logp: Towards a realistic model of parallel computation.
In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP ’93, pages 1–12, New
York, NY, USA, 1993. ACM.

[10] D. Das et al. Distributed deep learning using synchronous stochastic
gradient descent. CoRR, abs/1602.06709, 2016.

[11] E. Chan et al. Collective communication on architectures that support
simultaneous communication over multiple links. In Proceedings of
the Eleventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’06, pages 2–11, New York, NY, USA,
2006. ACM.

[12] E. Qin et al. Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2020.

[13] H. Kwon et al. Understanding reuse, performance, and hardware cost
of dnn dataflows: A data-centric approach. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages
754–768. ACM, 2019.

[14] J. Dean et al. Large scale distributed deep networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1223–1231. Curran
Associates, Inc., 2012.

[15] K. D. Underwood et al. Enabling flexible collective communication
offload with triggered operations. In 2011 IEEE 19th Annual Symposium
on High Performance Interconnects, pages 35–42, Aug 2011.

[16] K. He et al. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[17] M. Naumov et al. Deep learning recommendation model for personal-
ization and recommendation systems. CoRR, abs/1906.00091, 2019.

[18] M. Papadonikolakis et al. Performance comparison of gpu and fpga
architectures for the svm training problem. In 2009 International
Conference on Field-Programmable Technology, pages 388–391, Dec
2009.

[19] N. Agarwal et al. Garnet: A detailed on-chip network model inside
a full-system simulator. In 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 33–42, April 2009.

[20] N. Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[21] N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. CoRR, abs/1704.04760, 2017.

[22] P. Patarasuk et al. Bandwidth optimal all-reduce algorithms for clusters
of workstations. J. Parallel Distrib. Comput., 69(2):117–124, February
2009.

[23] R. Thakur et al. Optimization of collective communication operations
in mpich. Int. J. High Perform. Comput. Appl., 19(1):49–66, February
2005.

[24] S. A. Mojumder et al. Profiling dnn workloads on a volta-based
dgx-1 system. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 122–133, Sep. 2018.

[25] S. Sridharan et al. On scale-out deep learning training for cloud and
HPC. CoRR, abs/1801.08030, 2018.

[26] T. Hoefler et al. Loggopsim: Simulating large-scale applications in the
loggops model. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC ’10, pages 597–604,
New York, NY, USA, 2010. ACM.

[27] T. Hoefler et al. spin: High-performance streaming processing in the
network. CoRR, abs/1709.05483, 2017.

[28] W. J. Dally et al. Hardware-enabled artificial intelligence. In 2018 IEEE
Symposium on VLSI Circuits, pages 3–6, June 2018.

[29] Y. Li et al. A network-centric hardware/algorithm co-design to accelerate
distributed training of deep neural networks. pages 175–188, 10 2018.

[30] R. McDonald. Distributed training strategies for the structured perceptron.
In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics,
HLT ’10, pages 456–464, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

http://synergy.ece.gatech.edu/tools/garnet/

	Introduction
	Background - DL Training
	SW/HW Co-design and Scaling Challenges
	Parallelization Strategies
	Collective Communication Mechanisms
	Hierarchical Fabric Design and Topology
	Multi-phase Collectives
	Communication Scheduling

	ASTra-Sim
	Workload Layer
	System Layer
	ASTra-Sim Parameters

	Experimental Results
	Impact of 1D Topology
	Impact of 2D/3D Torus Topology
	Impact of Asymmetric Hierarchical Topology
	Impact of scaling on Torus topology
	Workload High-Level Analysis
	Resnet-50 Detailed Analysis

	Related Work
	Conclusions and Future Work
	References

