GAMMA: Automating the HW Mapping of DNN Models on
Accelerators via Genetic Algorithm

Sheng-Chun Kao
Georgia Institute of Technology

felix@gatech.edu
ABSTRACT

DNN layers are multi-dimensional loops that can be ordered, tiled,
and scheduled in myriad ways across space and time on DNN
accelerators. Each of these choices is called a mapping. It has been
shown that the mapping plays an extremely crucial role in overall
performance and efficiency, as it directly determines the amount of
reuse that the accelerator can leverage from the DNN. Moreover,
instead of using a fixed mapping for every DNN layer, research has
revealed the benefit of optimizing per-layer mappings. However,
determining the right mapping, given an accelerator and layer is still
an open question. The immense space of mappings (or map-space)
makes brute-forced exhaustive search methods unapproachable. In
this paper, we propose a domain-specific genetic algorithm-based
method, GAMMA, which is specially designed for this HW-mapping
problem. In contrast to prior works that either target simple rigid
accelerators with a limited map-space or choose from a restricted
set of mappings, we construct an extremely flexible map-space
and show that GAMMA can explore the space and determine an
optimized mapping with high sample efficiency. We quantitatively
compare GAMMA with many popular optimization methods and
observe GAMMA consistently finds better solutions.
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1 INTRODUCTION

Deep neural networks (DNNs) are being deployed into many real-
time applications such as autonomous driving, mobile VR/AR, and
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Figure 1: (a) The six dimensions of a CONV operation. K: output
channels, C: input channels, Y: input height, X: input width, R: fil-
ter height, S: filter width, Y’: output height, X’: output width. (b)
A 3-level mapping example on input activations. Each level repre-
sents parallelism across a spatial dimension of the accelerator. (c)
Physical mapping on accelerator. The L1-mapper parallelizes dim
C across rows, L2-mapper parallelizes dim Y across cols, and L3-
mapper parallelizes dim K across multiple arrays.
recommendation systems. However, DNNs are often strictly con-
strained by end-to-end latency or energy. This has opened up ex-
tensive research on computationally efficient DNN models [44, 59]
and inference hardware accelerators [1, 10, 15, 25, 30].

The architecture of DNN accelerators is determined by two key
components: HW resources and HW mapping strategy. The HW
resources (Fig. 1(c)) comprise of the total on-chip compute (hereby
referred to as “PEs"), local scratchpad (SL) buffer in each PE, a global
scratchpad (SG), and a network on chip (NoC) connecting them.
The HW mapping strategy comprises of the tile sizes, computation
order, and parallelization strategy (Fig. 1(b)). The design of compu-
tation order and parallelization strategy is also known as dataflow
[10, 31]. The HW mapping and/or the HW resources are either
fixed at design-time [1, 10, 15], or can be tuned at compile time
(if the accelerator is reconfigurable, such as CGRA-based [30, 62]
or FPGA [68]). The architectures are often designed based on the
expected dimensions and shapes of the DNNs and heuristics. For
example, the NVDLA [1] dataflow keeps weights stationary at PEs
and parallelizes across input channels and output channels, opti-
mizing for mid and late layers of many CNNs like ResNet [21] that
exhibit this property. The Eyeriss [10] dataflow parallelizes across
the activation and filter rows and keeps filter rows stationary.

Prior research [31, 35, 63, 68] has shown that there are no map-
ping strategies that can be efficient across all the layers of a DNN
model. To exploit the benefit of different mappings, in this paper,
we consider accelerators where the number of PEs and buffer sizes
are fixed at design time, but the mapping can be configured at
compile-time for each layer. The goal is to find the HW mapping
for each layer of DNN models that optimizes the objective (min.
latency/ energy).

Although multiple prior works [3, 14, 28, 29, 32, 34, 39, 53, 65,
68] have studied the mapping problem for DNN accelerators, the
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HW-mapping search space (exceeding O(10%°) even for a single
layer of a DNN, as shown later in Section 2.6) makes the problem
highly challenging. To cope with this challenge, most prior works
restrict the search space. For e.g., coarse-grained strided exhaustive
search [33, 47, 52, 54, 56], random search [35], fixed parallelism [32,
34, 52, 54, 56, 68], or limited search for tile sizes for one or more
fixed dataflows [33, 66]). Alternately, ML-based search techniques
have also been leveraged for guided search to increase sampling
efficiency [4, 8, 41, 61]; however, they need to restrict some aspects
of the mapping space (e.g., fixing the parallelism levels) to adapt
to the ML algorithms. Such restrictions of the mapping space can
lead to local optimal mappings which are significantly sub-optimal,
as recent works have highlighted [35, 46].

To efficiently deal with the massive search space of HW-mappings,
we propose GAMMA (Genetic Algorithm-based Mapper for ML
Accelerators). Unlike prior works, GAMMA performs a complete
search, considering all three aspects of HW-mapping (tiling strat-
egy, computation order, and parallelization strategy). Furthermore,
GAMMA can explore up to three levels of parallelism within the
mapping, as shown in Fig. 1(b), unlike prior works that target
one to two levels. Thus GAMMA can work across both single-
accelerator [11, 25] and multi-accelerator [46] systems. The key
novelty in GAMMA is (i) a specialized genetic encoding of all three
aspects of HW mapping, (ii) specialized mutation and crossover
operators to evolve new mappings, and (iii) new genetic operators
to model the behavior of adding and removing levels of parallelism.
We also develop a closed-loop workflow by integrating GAMMA
with a popular analytical cost-model for DNN mappings called
MAESTRO [2] to fully automate the mapping search problem.

We examine GAMMA on multiple popular DNN models, VGG16 [49],

MobileNet-V2 [44], ResNet-18 [21], ResNet-50 [21], and MnasNet [60].
We make quantitative comparisons with eight popular optimiza-
tions methods[13, 20, 22, 23, 26, 38, 42]. We observe that GAMMA
can find HW-mapping with the HW performance (latency/energy)
consistently better than other methods. Further, we show that
GAMMA can be run over multiple stages, enabling it to leverage
throughput slack from non-bottlenecked DNN layers and further
reduce total system energy by 58% (for ResNet-18) and 78% (for
VGG16) and power by 95% (for ResNet-18) and 99% (for VGG16).
The contributions of this paper are as follows:

o Comprehensive Map Space. GAMMA constructs and searches
through a comprehensive map-space comprising of computa-
tion order, tile-sizes, parallelization strategy, and up to three
parallelization levels, enabling it to target a wide variety of fixed
and flexible single and multi-accelerator systems.

o Generic Encoding scheme. The proposed encoding scheme
transforms the HW-mapping problem to an optimization prob-
lem, which enables the user to directly use off-the-shelf opti-
mization algorithms for mapping. These form our baselines.

o New Genetic Algorithm operators. GAMMA introduces three
new GA operators, enabling a domain-specific flexible search

space unlike most off-the shelf optimization algorithms.
¢ Autonomous Workflow. We automate GAMMA as a black-

box optimizer for the HW-mapping problem. This reduces the
learning curve and saves manual-tuning effort for ML practition-
ers exploring the HW-mapping space. GAMMA encapsulates
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an end-to-end workflow, which generates outputs compatible
with an open-source cost model [2]. We will open-source the
GAMMA infrastructure after the paper gets published.

The paper is organized as follows. Section 2 provides relevant
background on DNN accelerators and optimization methods; Sec-
tion 4 describes GAMMA; Section 5 presents comprehensive evalu-
ations; Section 6 discusses related works and Section 7 concludes.

2 BACKGROUND AND MOTIVATION
2.1 Layer types in DNNs

There are myriads of DNN models and most of them are built us-
ing different combinations of some common layers. Convolutional
layers (2D/depth-wise/point-wise) dominate in DNNs like ResNet-
50 [21], MobileNet-V2 [44], and InceptionNet [58] targeting image
processing tasks. Fully connected layers or MLPs are often used
as the last layer in many DNNs and as hidden layers of RNNs.
Different layer types expose different amounts of data reuse oppor-
tunities, which can be exploited by DNN accelerators. In this work,
we consider both CNNs and MLPs that dominate modern DNNGs.

2.2 DNN Accelerator Architectures

2.2.1  HW resources. Spatial DNN accelerators comprise of a 2D
array of Processing Elements (PEs), as shown in Fig. 1(c). Each
PE has a MAC to compute partial sums, and local scratchpad (SL)
buffers to store weights, activations, and partial sums. The accel-
erators also house a global scratchpad (SG), shared among PEs, to
prefetch activations and weights from DRAM for the next tile of
computation that will be mapped over the PEs and SL buffers.

2.2.2  Dataflow. In addition to the HW resources, each accelerator
needs to select a dataflow strategy to stage data movement in order
to leverage data reuse. Dataflow comprises of computation order
and parallelism strategy, which we describe in Section 2.3. It directly
affects the amount of data reuse the accelerator is able to leverage.
Dataflows can be fixed at design-time [1, 11, 15] or configured at
compile-time [30, 33]. In this work, we assume an accelerator with
configurable dataflows.

2.3 Mapping DNNs over Accelerators

Mapping refers to the dataflow strategy (i.e., computation order and
parallelism) coupled with the tiling strategy [31, 35]. We describe the
three components of a DNN mapping next.

Computation order. 2D convolution, shown in Fig. 1(a), is a six
loop-nest (or seven loops when considering batching). We can swap
the order of these loops randomly, incurring 6! choices. Different
orderings lead to different temporal reuse (aka “stationary” [10]) or
spatial reuse (multi-casting) opportunities for the operands.

Parallelism strategy. The parallelism strategy comprises of (i)
the number of levels of parallelism, and (ii) the specific loops to
parallelize or spatially unroll [67] at each level). Different dimen-
sions of parallelism at each level incur different data movement
patterns, multi-casting behavior, and reuse opportunities [31]. A
simple example is the NVDLA [1] architecture that employs a fixed
2-level mapping along the K and C dimensions for convolutions.

The number of parallelism levels depends on the number of
independent spatial dimensions within the accelerator substrate. In
this work, we assume up to three levels of parallelism (e.g,. rows x
cols x multiple arrays) as shown in Fig. 1(b). This sets the possible
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Figure 2: The HW performance of randomly sampled HW-mapping
in the design space on an example layer (second layer of VGG16). (a)
The Energy to Latency plot, (b) The Latency to Area plot, and (c) The
HW performance statistics of the sampled HW mappings.

choices to 6 X 5 x4 = 120. A 3-level mapping can work on a flexible
accelerator fabric [30] or multiple 2D accelerators (Fig. 1(c)).

Tiling strategy. We refer to tiling strategy as designing the
tiling size of each dimension (e.g., input(C)/output(K) channel di-
mensions, Y/X dimensions of activations, R/S dimensions of weights
in Fig. 1(a)). The tile size of each dimension could range from 1 to
the size of the dimension. For e.g., the second layer of VGG16 [49],
(K=64, C=64, Y=224, X=224, R=3, S=3), forms a tile size search space
of 0(10%) = 64% x 224% x 32.

The tile sizes determine the number of operands of each tensor
(input/weight/output) that need to be present within the accelerator
buffers at each time-step. Tile sizes depend on both the dataflow
strategy and the size of the buffers. Tiles of data move between
DRAM and the SG buffers, and between the SG and SL buffers. (As
discussed above, some of these data items may remain stationary
in the buffers for longer, while some stream in and out, depend-
ing on the computation order). The rate at which different tiles
move determines the off-chip and on-chip bandwidth requirement;
bandwidth less than this leads to stalls.

2.4 Target Accelerator Systems

Many DNN accelerators come with a fixed dataflow strategy baked
into silicon at design-time [1, 11, 15, 25]. The job of a mapper is to
simply find tile sizes for each layer to fit within the buffers. However,
there is no perfect dataflow that is supreme for all layers in a DNN
model [31, 35]. This led to a suite of flexible accelerators [30, 33]
that allow dataflow configurability [31, 35] at compile-time via
flexible buffering and connectivity to make the accelerator future-
proof to emerging DNNs. This work considers such accelerators
and hence assumes that the mapping (computation order, paral-
lelizing dimensions and tile sizes) are configured at compile-time.
The only constraint for the mapper from hardware is the maximum
number of parallelism levels (which depends on the accelerator ar-
ray flexibility) and maximum tile-sizes (limited by the buffer sizes).
It is certainly possible to restrict further aspects of the mapping,
if the hardware desires, within our framework. Alternately, our
proposed framework can also be used at design-time to determine
the optimal dataflow for accelerators built for specific DNNs types.
We present our target accelerators in Section 4 and Table 3.

2.5 MAESTRO: A Cost Model for evaluating the

cost of DNN Mappings

Frameworks like MAESTRO [2] and Timeloop [35] use detailed
analytical modeling to evaluate different mapping strategies of
a DNN on the accelerators. We leverage MAESTRO [2] as our
underlying cost model because of its ability to support the target

detailed mapping space. It supports most of the common DNN
layers such as CONV, depth-wise CONV, and Fully connected. Given
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a DNN layer, a HW resource configuration (PE, SL size, SG size,
NoC latency and bandwidth), and a mapping strategy, MAESTRO
estimates the statistics such as latency, energy, runtime, power, and
area.

Impact of Mapping on Performance and Energy. In Fig. 2(a)
and (b), we randomly sampled 10K possible HW mappings and use
the cost model to estimate its corresponding HW performance. Each
datapoint reflects a valid HW mapping design for the same DNN
layer (the second layer of VGG16). From Fig. 2(c), we can observe
several order of difference on HW performance when the mapping
varies. This validates similar studies [35] and shows how critical
the HW-mapping is to the performance of a DNN accelerator.

2.6 Mapping Search-Space aka Map Space

The mapping space of a 1-level mapper in the example of the second
layer of VGG16 is 0(10'2) = 0(10° x 6! x 6). A N-level mapper
increase the mapping space by the power of N, leading to O( 1012N),
which is 0(10¢) when considering three level of parallelism. This
design space is hard to enumerate even with coarse-grained stridden
enumeration. Therefore, a domain-specific specialized optimiza-
tion algorithm is needed to search the design space with sample
efficiency.

2.7 Baseline Search Methods

Many search/optimization methods exist today for architects to per-
form Design-Space Exploration (DSE) and form our baselines. We
leverage eight optimization methods, including Random Search, Ge-
netic Algorithm (GA) [23], Differential Evolution (DE)[38], (1 + 1)-
ES [42], Covariance matrix adaptation evolution strategy (CMA-ES)
[20], Test-based Population-Size Adaptation (TBPSA) [22], Particle
Swarm Optimisation (PSO) [26], Passive Portfolio (pPortfolio)[13].
We summarize them in Table 4.

3 GAMMA ALGORITHM AND WORKFLOW
3.1 Challenges with Baseline Methods

The baseline methods in Section 2.7 can all be used for HW-mapping
search. However many algorithms (e.g., CMA-ES, PSO, DE, and
also standard GA) work in rigid search space, i.e., the number of
parameters in a design point is pre-defined, which restricts the levels
of parallelism (Section 2.3) to a pre-defined number and shrinks the
potential search space by log scale. Our goal is to parameterize the
level of parallelism as well. We need a framework that accepts input
with flexible lengths. There are many possible ways to realize such
a flexible framework, such as adding an extra auto-encoder [27]
or using an sequence-to-sequence structure [57] at the input layer.
However, they require another level of optimization, training, or
approximation, which brings in relatively large overhead comparing
to the optimization algorithm (DE, ES, standard GA) itself.
Table 1: Terminology in Genetic Algorithm (GA).

Term Description
Gene The encoded value of one of the dimensions of a design point.
Genome . . . .
A complete series of genes representing a deign point.
(Individual) P genes rep gadeighp
Elite A set of genomes that has the highest evaluated fitness.
q An entire set of genomes forms a population (one generation).
Population . L. N .
(Generation) The populations evolves with time by mutation/crossover and selection of
the well-performing genomes to the next generation.
Crossover | Blend two parents’ genes to reproduce children genomes.
Mutation Randomly perturb a parent’s genes to reproduce children genomes.
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Figure 4: (a) GAMMA’s description of a 2-level mapper and (b) its
decoded description for cost model (MAESTRO) of a NVDLA-like
[1] 2-level mapper.

3.2 Genetic Algorithms (GA)

In this work, we develop a GA-based search technique. We list some
common terminology for GA, namely gene, genome, elite, population,
we will use across this paper in Table 1. A genome is a mapping
solution in our context. We reproduce the next generation by mu-
tation and crossover. The goal of GA is to retain well-performing
genes across the evolution.

Benefits of GA. GA is one of the most popular algorithms for
the scheduling problem for its lightness and simplicity [12, 24,
48, 50, 64]. Research shows GA reaches competitive performance
with deep reinforcement learning [43, 55], and hyperparameter
optimization problem. STOKE [45] and TensorComprehensions
[61] use GA to search the space of DNN code optimization.

Challenges with standard GA. Standard GA still falls into the
pits of the algorithm needing rigid input length. To this end, we
develop a way to adopt GA to our problem by designing a novel
evolution mechanism, which allows it to be flexible, without adding
up immense overhead such as adding encoder or training an seq-
to-seq model. We discuss these details next.

3.3 GAMMA Encoding scheme

We design a specific genetic encoding scheme for the HW mapping
problem. For a 1-level mapper, we encode them into a (7, 2) dimen-
sions of the genome, which contains 7 pairs of genes, as shown in
Fig. 3(a). A pair of the gene contains a DNN layer tensor notation
(e.g, K, C) and its tile size. The ordering of pairs reflects the compu-
tation order. The first pair of gene tells the parallelizing dimension.
The 2-level mapper in Fig. 3(b) is encoded in the same manner.
Pr1 describes number of parallel L1-mappers, which is constrained
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Figure 5: (a)The structure and algorithm flow of GAMMA, and (b)
The summary of evolution in GAMMA.

by the number of available PEs (the number of PEs defines the
maximum amount of parallelism.), and the corresponding tile size
of the chosen parallelizing dimension (since we need at least one
element to distribute into each parallelism unit). The L1-mapper
describes the inner loop. The L2-mapper describes the outer loop,
while containing P;; number of instances of L1-mapper.

3.4 Decoding Genomes into a Mapping

We outline how we describe the three aspects of mapping space
in the cost model, and show how the genomes from GAMMA are
decoded into the cost model’s description. Fig. 4(a) is a mapper de-
scription in GAMMA and Fig. 4(b) is its corresponding description
in the cost model (MAESTRO). The order of K, C, X, Y, R, S from
left to right in (a) and top to bottom in (b) reflect the computation
order. The number paired with dimension in (a) and the number
inside the bracket in (b) reflects the tiling size on each dimension.
In MAESTRO, we note the parallelized dimension as SpatialMap
and remaining dimensions as TemporalMap. Therefore we mark
the first element (indicating parallelizing dimension) in (a) as Spa-
tialMap in (b). A level of mapper in GAMMA can be translated
as a Cluster in MAESTRO, in which tiling strategy, computation
order and parallelism dimensions are fully described. We formulate
multiple level of parallelism by concatenating the cluster. The L1
and L2 mapper are decoded into the bottom and upper cluster.

3.5 Algorithm Flow

Fig. 5 shows the flow of the GAMMA algorithm. We discuss the de-
tail of each function block next. We first describe how we adopt the
generic evolution operators, Crossover and Mutation, to the HW-
mapping problem, and then introduce three additional evolution
operators (Reorder, Growth and and Aging) in GAMMA.



GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm

Initialization. Assuming population size P, we randomly ini-
tialize P number of the 1-level mappers. The only restriction is each
tile size is smaller than the corresponding layer dimension.

Evolution: Crossover. Crossover is to take advantage of the
genes in some well-performing genomes, which forms a parents
subset. We randomly pick two genomes from the parents subset.
We blend their genes by interchanging the value of the tile size.

Evolution: Mutation - Parallel Dim. With a certain probabil-
ity, which is set by the mutation rate of the algorithm, we mutate the
parallelism dimension by randomly sampling one of the 6 dimen-
sions of the tensor and setting it as a new parallelism dimension.

Evolution: Mutation - Tile Size. With a certain probability, we
randomly pick paired genes and assign a new random tile size for
them. If the tile-size in the mapping does not fit within the SL buffer
of the PE for that operand, it is given a large penalty during its
evaluation, as we discuss later in Section 3.6.3.

Evolution: Reorder. Reorder is another format of mutation.
We pick two paired genes and swap their position in the genome,
which reflect the reordering of the mapping.

Evolution: Growth. With a certain probability, we grow the
genome by appending a randomly initialized 1-level genome to the
current genome, as shown in Fig. 3(b). The original L1 mapper will
be promoted to L2-mapper, and the newborn genome is noted as
the new L1-mapper.

Evolution: Aging. The natural phenomenon of a person’s DNA
keep shortening in the lifespan is known as DNA aging. With a
certain probability, we will "age" the genome by cutting out the tail
of genome, an L1-mapper, which moves genome from (b) back to
(a) in Fig. 3.

Evaluate and Selection. After evolution, we evaluate the popu-
lations by interacting with the evaluation environment (Env), which
we will describe in Section 3.6.3. Env will feedback the fitness of
each individual. We select the population that is eligible to enter
the next generation by the ranking of their fitness.

3.6 Flow for Automated Mapping Search

3.6.1 Constraint. Our target is to find the HW mapping of a DNN
layer that fits within limited HW resources - PEs and buffers. Dif-
ferent mapping lead to drastically different requirement of HW
resources, especially the buffer sizes, as shown in Fig. 2(c). Note
that a mapping implicitly runs over multiple time iterations if the
number of computations in the dimension to paralleize exceeds the
number of available PEs; however, the local (SL) buffer and global
(SG) buffer sizes to run each iteration (which comes from the tile
sizes) is a hard constraint when searching through the map-space.

3.6.2 Objective. The target is to minimize the objective. The objec-
tive could be any HW performance index that the user is interested
in such as latency, power, energy, area, energy-delay-product (EDP),
or other combinations of them. Minimizing the objective is not a
trivial task since there is no straight-forward solution even for a
common tensor shape of a DNN layer. Minimizing the latency as
an example, the most efficient choice of parallelizing dimension
involves the shape of tensor, available PEs to parallelize, available
SL/SG buffers to house the fetched data, and the tile size of each
dimension. All the decisions (or genes) correlate and jointly decide
the latency. Some common heuristics of parallelizing across activa-
tions dimensions at the early layers and across channel dimensions
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Table 2: The HW resources in different platforms.

# PEs SL size (on-chip) SG size (on-chip)
Edge Platform 168 512B 108KB
Cloud Platform | 65,536 4MiB 24MiB

Table 3: Three target systems (Accel’s infrastructures).

System Description

S1:Fixed | Accelerator with 2D PE array (row x col) with fixed aspect ratio. This fixes P, to number of
2D Accel | rows, and level of parallelism to 2. Example: TPU, NVDLA.

S2: Accelerator with 2D PE array with flexible aspect ratio. The PE array can be configured to
Flexible | flexible 2D shape, which relax the choices of P ;. We also relax the level of parallelism to be
2D Accel | 1 or 2. Example: Eyeriss, Eyeriss_v2.

S3: Accelerator scaling out 2D structure. Accelerator comprises multiple 2D PE array instances,
Scale-out | enabling parallelism across PE arrays. The level of parallelism is either 2 or 3. L1 and L2
2D Accel | mappers map within and L3 mapper maps across the PE arrays. Example: Simba, Tetris.

at the late layers in CNN becomes challenging when involving HW
resource constraint and the multi-level parallelism flexibility of
mapping strategy.
3.6.3 Interactive Environment (Env). Structure: The Env is initial-
ized with the target DNN layer, the accelerator constraint, and the
optimization objective (latency/energy/power). Env contains a HW
performance cost model, where we leverage MAESTRO [2] for its
ability to model and evaluate arbitrary spatial accelerators and
mappings. When interacting with GAMMA, Env takes in an entire
generation of populations, decodes them into the input format of
the cost model as describe in Section 3.4, and feeds into the cost
model to gather the statistics of their HW performance. Finally,
using the fitness function, which we discuss next, Env extracts
fitness scores and returns them to GAMMA.

Fitness Function: We extract the corresponding reward value
(= -Perf. index) from the statistics according to the set objective,
and substitute it into the fitness function. We give the individual a
large penalty - a negative infinite - when the constraint is not met.
That is, the evolved mapping require more HW resources than the
accelerators’ constraint, which is then not suitable for the targeting
accelerators. The fitness function is summarized as following.

1)

—Infinite, others
4 METHODOLOGY
4.1 Models and Platforms

DNN Models. In our experiment, we consider five CNN models
with different complexity: VGG16 [49], MobileNet-V2 [44], ResNet-
50 [21], ResNet-18 [21], MnasNet [60].

HW resources of Platforms. We consider two platforms with
different number of HW resource: cloud platform (which resembles
the HW resources in cloud TPU[25]) and edge platform (which re-
sembles the HW resources in Eyeriss chip[11]), as shown in Table 2.

Target Systems. We consider three kinds of accelerator systems
as shown in Table 3.

4.2 Target Search Methods and Parameters.

. reward, if constraint met
Fitness =

We compare three sets of methods, described below. We set the
maximum sampling points as 10K for all methods and compare the
HW performance of their searched solutions.

Baseline Optimization Methods. We compare with a suite of
optimization methods whose implementations are adopted from
Nevergrad [40]. The methods, and their experimental parameter
settings are summarized in Table 4.

Fixed Dataflows from prior accelerators. We also compare
with some widely recognized HW-mappings inspired by dataflows
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Table 4: Baseline optimization methods.

Alg. Description

RS Random Search. We randomly sample design points and keep the best solution.

Genetic Algorithm. We encode the design point into a series of genes. We evolve the genes by
GA | mutationand crossover.
We use mutation rate: 0.1, crossover rate: 0.1, in the experiment.

Differential Evolution. In DE, we mutate by the difference vector (DV). When mutation, we
sample a parent and extract its difference on each dimension with another parent to form a local
DE | DV and with the best parent to form a global DV. Next, we sample another parent and mutate it
by adding the weighted sum of found local DV and global DV to it.

We use weighting for local DV: 0.8, weighting for global DV: 0.8, in the experiment.

(1 +2)-Evolution Strategy. For each parent we mutate it to reproduce A number of mutated

(1 +A)- | children. The parent and children compete with each other by their fitness values and the best one
ES | will go to the next generation.

We use (1+1)-ES in the experiment, where one parent generate one child.

Covariance Matrix Adaptation-ES. We use covariance matrix of the elite group and the entire
population to estimate the distance to the optimum. We adapt the step size based on covariances.
We use 1/2 of the best performing individuals as elite group in the experiment.

CMA-
ES

Test-based Population-Size Adaptation. We estimate the trend of the population’s fitness values.
TBPSA | When the fitness values converge, the algorithm will adapt to have a smaller population size.
We set the initial population size as 50 and let it evolve in the experiment.

Particle Swarm Optimization. We track global best and parent best, which represent the global
PSO | and local information respectively. We update the parameters by the weighted sum of them.
We use weighting for global best: 0.8, weighting for parent best: 0.8, with momentum w: 1.6.

Passive Portfolio. We maximize diversity by spreading the risk broadly to multiple instances

pPort- | (optimizers). We launch K numbers of optimization methods, each experiencing 1/K samples, and
folio | take the best performing solution provided by one of them.

We use the passive portfolio of CMA-ES and DE in the experiment.

within prior accelerators: NVDLA-like [1] (parallelizing K and C
dim.), Eyeriss-like [10] (parallelizing Y and R dim.), and ShiDianNao-
like [15] (parallelizing Y and X dim). All three of them have fixed
2-level parallelism dimensions. We create custom mappings (i.e.,
dataflow + tile-size) by setting appropriate tile sizes that fit within
the SL buffers for both the edge and cloud platforms .

GAMMA. We set the populations=200, generations=50, and the
mutation/crossover rate and execution rate of other evolving func-
tions as 0.5.

5 EVALUATION
5.1 S1:Fixed 2D Accel.

In Fig. 6(a), we run the baseline algorithms and GAMMA to search
for the HW-mapping for each of the 20 layers in ResNet-18 with S1
setting (i.e., 2 levels of parallelism) and edge platform constraint.
We record the best solution (lowest latency) of each algorithm after
they execute 10K samples (most comparing algorithms converge
after 10K samples). Fig. 6(a) shows the latency of each algorithm’s
solutions, where we also plot the corresponding latency when using
fixed dataflow. We observe the baseline algorithms and the fixed-
dataflows are with competitive performance. However, GAMMA
can consistently find better solutions than both methods.

Valid solution and different platform constraints. The HW-
mapping is invalid when its requirement of HW resources exceeds
the platform constraint. Some methods cannot find any valid solu-
tions that conform to the constraint after 10K sampling. Therefore
some methods have no solutions (NAN) in some cases as shown in
Fig. 6(a). We did not show the result of Random Search here, since it
ends up finding no solution for most of the cases, which also infers
the complexity of the search space (it cannot find a valid solution in
10K samples). When we have more HW resource budget as Cloud
platform in Fig. 6(b), all baseline optimization methods can start
to find valid solutions and optimize on them. This shows how the
imposed constraints increase the complexity of the problem.

Despite the fact that the optimization methods fail in some
cases, their solutions are competitive to manual-design ones (fixed-
dataflow) when they succeed, as shown in Fig. 6(a)-(b). It shows
the potential of automating the HW-mapping design process by
properly formulating it into an optimization problem, which can
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significantly relieve the domain expert’s effort on the back-and-
forth tuning process. The challenge is the occasional failing of some
methods. Moreover, GAMMA can consistently find valid and bet-
ter solutions than others. Comparing with others, GAMMA finds
solutions costing 224X to 440x less latency in Edge platform
and 153X to (1.3E+7)x less latency in Cloud platform.

5.2 S2:Flexible 2D Accel.
5.2.1 Objective: Latency. Fig. 6(c)-(d) compares latency for accelera-

tors with flexible aspect ratios (i.e., the accelerator can support both
1-level and 2-levels of parallelism). One interesting observation is
that the fixed ShiDianNao-like dataflow and NVDLA-like dataflow
shows better performance than baseline optimization methods at
early and late layers respectively. This is because ShiDianNao-like
dataflow parallelizes along X, Y dimensions and early layers of
ResNet-18 have high X-Y values; similarly NVDLA-like parallelizes
along C-K and late layers have high C-K values. For the baseline
methods, since the number of parallelism dimensions is fixed, we
search for the best 1-level and 2-level solution for 5K points each,
and pick the better one. GAMMA searches across both 1-level and 2-
level via the growth and aging operators described earlier. GAMMA
finds valid and better solutions than others. Compared with other
techniques, GAMMA finds solutions with 209x to 1,035X less la-
tency in Edge and 337X to (7.1E+5)x less latency in Cloud platform.
5.2.2  Objective: Energy. Energy consumption depends on the num-
ber of active computations, memory accesses, and SL/SG buffer
usages. In the Edge platform in Fig. 8(a), fixed dataflow show no
advantage, and most optimization methods can find better solutions
than the fixed dataflows. In the Cloud platform in Fig. 8(b), opti-
mization methods show competitive or better performance than
Eyeriss-like and ShiDianNao-like dataflow. However, NVDLA-like
dataflow shows high energy efficiency, since the K, C dimensions
expand in ResNet-18, which gives more advantage to the dataflow
that is skilled at layer with large K, C dimensions (NVDLA-like).
They finish the computation with shorter time and less memory
access, and hence cost less energy. However, these advantages do
not show up when NVDLA-like dataflow is in the tight constraint
(Edge platform), which has less SL/SG buffer and limited the par-
allelism opportunity. Across all fixed dataflow and optimization
methods, GAMMA finds solutions costing 11X to 36X less energy
in Edge platform and 2X to 42X less energy in Cloud platform.

5.3 S83:Scale-out Flexible 2D Accel.
5.3.1 The growth of search space. Increasing the level of paral-

lelism will exponentially increase the search space, which makes
the performance of the optimization methods more critical to the
found solutions. As shown in Fig. 6(e)-(f), the number of cases
that methods fail to find solution becomes significant. However,
GAMMA can consistently find valid and better solutions, costing
241X to 644X less latency in Edge platform and 657X to (1.2E+5)x
less latency in Cloud platform. Fig. 6(g)-(h) shows the end-to-end
latency of GAMMA in different accelerator systems. We can find
GAMMA performs the best in S3, where the design space is several
order larger than S1 and S2 but with more flexibility. It shows that
GAMMA can explore the design space with sample efficiency and
takes advantage of the flexibility of the mapping space.

5.3.2  Deep-dive into found solution. Fig. 7 shows the HW-mapping
solutions found by GAMMA on ResNet-18. At the early layer (Y, X
dominant, Y=224, X=224), GAMMA found a mapper that parallelizes
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--Dla-like Eye-like --Shi-like --standardGA -s-pPortfolic -=-CMA-ES --TBPSA ---PSO --DE --(1+1)-ES [-=-GAMMA (cycles)
6cyc|es) (cycles) (cycles) 2.9E+05
& 106408 eoee 106409 o oo, __1.0E+09 > 5.8E405
S 108407 S 108407 § $e,003 BoB8 8ionoy Booee 2 HI e
21 = ool 8800 00c5055 =100 ss.essd 888 3 276405
5 > 1.0E+05 i s 8808°%0, ] s8ss | &
g | & roesos gt L I G 1.0E+05 u H u = 2.6E+05
I ° -4 EEEE § EESg gp®"E EEN 3 pEEEEg LT T L] - “
ol& 1.0E+03 \ i 1.0E+03 2 i 9 0E+03 "= mm c
S)3 5 ] 5 L 2.5E+05
w | oE0L this work 10E+01 1OE+01 S 55405
= 13 5 7 BLAlelR 13 15 17 19 1 3 5 7 9 11 13 15 17 19 13 5 7 o 11 13 15 17 19 3
g’o #of NANT”— 3§ / # of NAN LAYER # of NAN LAYER o 2.3E+05
S || GA | Por | CM | PSA | PSO | DE | 1+1 | GAM | | sGA | Por | CM | PSA | PSO | DE | 1+1 | GAM SGA | Por | CM | PSA | PSO | DE | 1+1 | GAM 226405
0 S1 s2 s3
18121 ]3]|5]1 4| 4|0|6 |3 |51 0 4 |3 |12|9 |4 6|12|0
(a) (c) e) (2)
(cycles) (cycles) (cycles) (cycles)
_ 1.0E+11 o—oe |~ VOEH09 & 8o ooce oo GliEME o o 2.0E+04
G ) ‘ i ; ° © [ XX N1 ° ' ' '
& 1.0E+09 Q 1.0E+07 . ef°00segee Qu10E+07 ela010¢
=) s 2 Sooee85.555 s = e.|.|!. B0esfsss § T 1.6E+04
5 1OE+07 > 1.0E405 s ®® > 10E:05 8733850800 H
g S 1.0e+05 g 000000, 000 ® s !"""3"'.'....... 2
e 1 0E+03 §1.DE+03 EEEm H .:...C=OC 51.0903 EmEEg @ = : ‘:" 8 126408
A = nlgn = mm T
8| - roe02 10E401 " = um e = omm = mEE S 4 oeos
o 1 3 5 7 9 1113 15 17 19 13 5 7 9 1113 15 17 19 S e
T |#ofNAN LAYER # of NAN LAVER # of NAN 2 sorvos
8 SGA | Por | CM | PSA | PSO | DE | 1+1 | GAM SGA | Por | CM | PSA | PSO | DE | 1+1 | GAM | | sGA | Por | CM | PSA | PSO | DE | 1+1 | GAM I
0 0 0.0E+00
0 0 0 0 0]0] 0 0 0 0 0 0 00| 0 0 0 0 0 00| 1 s1 52 §3
(b) (d) ® (h)

Figure 6: The performance of found solutions across a suite of optimization methods on different target systems (S1, S2, S3) and different

platform constraints (Edge, Cloud) for ResNet-18.
NAN: The method cannot find a solution that fits in the platform constraint within 10K samples.

Table 5: End-to-end performance and energy on S3 for a suite of DNN models using fixed mappings versus GAMMA. Bold means lowest values.

MobileNet-V2 MnasNet ShuffleNet ResNet50
. NVDLA-| Eyeriss- | ShiDian NVDLA-| Eyeriss- | ShiDian NVDLA-| Eyeriss- | ShiDian NVDLA-| Eyeriss- ShiDian
Obj. | Accel. [GAMMA . . . |GAMMA . . . GAMMA . . . GAMMA . - .
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Figure 8: The energy consumption of S2 on ResNet-18.

along Y dim at L2-mapper. At the medium layer (Y=56, K=128, C=64,
X=56), GAMMA found a 3-level mapper, which maps across Y, K,
and C dimensions. At the late layer (K, C dominant, K=512, C=256),
GAMMA parallelize C at L2-mapper and K at L1-mapper. From
the above observation, we find the automatically evolved solutions
are consistent with some heuristic and insight from the manual-
designed dataflows 1 (1, 10, 15].

The found solutions also show that by relaxing some tile size heuristics such as

deciding tile size by the integral multiple of PEs array sizes could help reach better
solutions.

10 20 30 a0 50 10 20 30

(&) MabileNet V2 (5) MmNt
Figure 9: End-to-end latency improvement over generations with
GAMMA for S3 system and edge platform constraint.
5.3.3  Other DNN models and end-to-end performance. Table 5 shows
the performance of GAMMA comparing to fixed dataflow on other
widely-used DNN models. Here, for the interest of space, we only
list the end-to-end performance, which is the sum of latency/energy
of all the layers. Table 5 shows no fixed dataflow is good across all
DNNs and platforms. For e.g., when considering latency, ShiDianNao-
like performs the best on Edge platform, and NVDLA-like performs
the best on Cloud platform. In contrast, the energy numbers follow
NVDLA-like < Eyeriss-like < ShiDianNao-like; NVDLA-like gets
advantage over the other two for energy via reuse across K and C di-
mensions (which dominate in most CNN-based models). Among all
experiments in Table 5, GAMMA always provides the lowest latency
and energy. Across models and platforms, GAMMA finds solu-
tions costing 5x to (1.2E+5)x less latency and 2x to (1.6E+4)x
less energy. Fig. 9 tracks how GAMMA converges to its solution
across generations; this shows its sample efficiency via rapid im-
provement over generations.

40 50
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Table 6: Two stage optimization for inter-layer parallelism on
ResNet-18 * and VGG16 T for a multi-accelerator (S3) pipelined de-
ployment. In the 1st state, we optimize for latency and identify
the bottleneck layer (highlighted in bold), which determines the
pipeline latency. In the 2nd stage, we optimize for energy (or power)
by allowing the latency of other layers to increase, while staying less
than the pipeline latency.
ResNet Exp: Latency - Power Exp: Latency - Energy

18 Ist stage 2nd stage Ist stage 2nd stage
Latency | Power | Latency | Power || Latency | Energy | Latency | Energy
(cycles) | (mW) | (cycles) [ (mW) [ (cycles) (nJ) (cycles) (nJ)
1 4.9E+03 [ 8.0E+02 | 7.1E+04 | 2.5E+02 || 1.1E+02 | 3.2E+06 | 3.8E+04 | 2.8E+06
2 1.6E+05 | 5.1E+02 | 1.6E+05 [ 4.4E+02 || 1.0E+04 | 1.2E+08 | 5.2E+04 | 2.5E+07
6 4.2E+04 | 4.2E+02 | 1.3E+05 | 2.5E+02 || 2.9E+04 | 1.4E+08 | 6.1E+04 | 7.6E+07
7
8

Layer

4.6E+03 | 3.3E+02 | 6.5E+04 | 2.5E+02 || 8.9E+02 | 8.8E+06 | 2.4E+04 | 5.8E+06
4.9E+04 | 2.6E+02 | 1.5E+05 [ 2.5E+02 || 6.1E+04 | 1.8E+07 | 6.1E+04 | 1.8E+07
11 | 2.9E+04 | 5.6E+03 | 1.5E+05 | 2.5E+02 || 2.6E+04 | 9.7E+07 | 3.7E+04 | 5.5E+07

12 1.3E+04 | 1.5E+04 | 1.4E+05 | 2.5E+02 || 2.2E+04 | 6.9E+07 | 4.2E+04 [ 2.1E+07
13 | 4.1E+04 | 3.0E+02 | 1.5E+05 | 2.5E+02 [| 2.5E+04 | 1.6E+07 | 5.1E+04 | 8.9E+06
16 | 2.1E+04 | 5.8E+02 | 5.9E+04 | 2.5E+02 || 2.3E+04 | 1.8E+08 | 3.7E+04 | 6.5E+07

18 | 4.9E+04 | 9.0E+03 | 1.5E+05 | 2.5E+02 || 5.5E+04 | 1.3E+07 | 5.9E+04 | 9.0E+06
19 | 2.6E+04 | 2.0E+04 | 1.4E+05 | 2.5E+02 || 1.0E+04 | 8.9E+07 | 3.8E+04 | 6.7E+07
Max. | 1.6E+05 | 2.0E+04 | 1.6E+05 | 4.4E+02 (| 6.1E+04 | 1.8E+08 | 6.1E+04 | 7.6E+07
Ave. | 5.0E+04 | 6.4E+03 ] 1.3E+05 | 2.8E+02 || 1.8E+04 | 7.1E+07 | 4.3E+04 | 3.1E+07
VGGI6| Summary for Model VGG 16
Max. | 2.7E+06 | 1.3E+05 | 2.7E+06 | 2.5E+02 (| 1.8E+06 | 1.3E+09 | 1.8E+06 | 3.3E+08
Ave. | 3.3E+05 | 3.3E+04 | 1.3E+06 | 2.5E+02 || 3.1E+05 | 6.7E+08 | 1.1E+06 | 1.4E+08

* We only display the layers with unique shape. Maximum and Average are calculated based on all
20 layers of ResNet-18. T we display the summary of VGG16 for the interest of space.

5.4 Two-stage Optimization for Inter-layer

So far in this paper, we consider three systems: S1, S2, and S3, to
parallelize the computation of a DNN layer, whose scenario can
be termed as intra-layer parallelism. Next, we show how GAMMA
can also be applied to the scenario of inter-layer parallelism. We
consider a S3 system with inter-layer parallelism scenario, used in
prior multi-accelerator systems [18, 46, 62], where each accelerator
is handling one layer of a model, and the entire model is executed
as layer-wise pipeline manner on the system.
5.4.1 Motivation. The pipelined system can often bring higher
throughput. However, it also owns the problem of being bottle-
neck by critical block. The layer-wise pipelined accelerator can be
bottlenecked by some computation-heavy layer. As the bottleneck
latency exists and may not be able to be further optimized, in this
case, we relax other non-critical blocks by relaxing their timing
constraint to achieve overall lower energy/power of the system.
5.4.2  Structure. We apply a two-stage optimization method, where
we optimize latency first and then power/energy at the second stage.
Stage I: optimize latency. We use GAMMA to find the mapping
that optimizes the latency of each layer. We identify the bottleneck
layer, whose latency decides the pipeline latency of the system.
Stage II: optimize power/energy. With the pipeline latency
decided, we relax other layers by applying GAMMA again but
optimizing power/energy at this stage with the awareness of not
exceeding the pipeline latency. This is formulated by adding a heavy
penalty when the searched solution exceeds the pipeline latency.
With the designed two-stage optimization, we could optimize the
throughput of a layer-wise pipelined system at the first stage and
further optimize its power/energy efficiency at the second stage.
5.4.3 Results. Table 6 shows the HW performance of each layer in
ResNet-18 in the 2-stage optimization scheme. In the Latency-Power
experiment, we optimize latency first and their power next. After
the first stage, it shows that the latency is bottleneck by the second
layer, and it decides the pipeline latency. With the awareness of
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the pipeline latency, we optimize power at the second stage and
find we could reduce the power by 95% comparing to the first stage
when remaining at the same pipeline latency. The Latency-Energy
experiment shows 58% reduction on energy consumption. Likewise,
we execute the same flow on VGG16 and found it also effectively
reduce the power by 99% and energy by 78% respectively.

6 RELATED WORKS
6.1 Dataflow Design in DNN Accelerators

Dataflow design has been a popular topic in the research of DNN
Accelerators. Multiple hand-designed dataflows have been used
across accelerators, categorized [10] as output-stationary [15, 19,
37], weight-stationary [1, 5, 6, 16, 36], row-stationary [10], input
stationary, and no local reuse [7, 69]. In this work, we provide
a framework to automatically determine an optimized dataflow
and mapping. GAMMA can be used at compile-time to configure
in the mapping if the underlying accelerator supports multiple
dataflows [30, 33], or at design-time to determine the right dataflow
for a custom accelerator developed for running a fixed set of DNNs.

6.2 HW Mapping Space Search and Exploration

Many recent works have been developed to tackle DNN HW map-
ping. However, since the search space is extremely large, many
of them restrict the search space by considering only part of the
aspects of the HW mapping search space. Some consider a limited
combination of HW mappings and pick among them [33]. Some con-
strain the parallelizing dimension to a few choices [17, 18, 56, 63].
Some fixed the computation order to a subset of all combinations
[47, 51, 62, 66, 68]. Some vastly reduce the space of tiling sizes [52]
by a heuristic, or large step size, e.g., power of two [54]. Interstel-
lar [14, 67] considers all three aspects of HW-mapping, but they
constrain the search space by limiting the choice on each aspect
such as the choices of loop order, parallelizing dimension. All these
prior arts exclusively rely on exhaustive/random search with the
help of coarse-grained striding enumeration or heuristics-based
pruning. On the other hand, to search the mapping space with
sample efficiency, Suda et. al[56] and TensorComprehensions [61]
uses genetic algorithm, AutoTVM [8, 9] uses simulated annealing
and boosted tree, Reagen et. al, [41] uses Bayesian optimization,
RELEASE [4] uses RL to formulated a more guided search by ML
technique. However, these ML-based algorithms need to work in
a pre-defined rigid design space, where the level of parallelism is
restricted, and hence the mapping space is constrained. The map-
pers in Timeloop [35] and Simba [46] explore the full search space;
however, they rely on exhaustive/random search. In this work, we
explore a full search space, but with a ML-based guided search
method with sample efficiency.

7 CONCLUSION

Finding optimum mappings of DNNs on accelerators is critical for
performance, but is challenging to automate due to an extremely
large layer-specific and HW-specific search-space. In this paper, we
propose a GAMMA, a genetic algorithm-based technique for the
HW-mapping problem. GAMMA consistently outperforms other
search techniques. With new DNN models and new accelerators be-
ing proposed at an unprecedented rate, GAMMA allows researchers
to quickly explore the HW efficiency of emerging DNNs without
time-consuming human-in-the-loop mapping and tuning processes.
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