
E3: A HW/SW Co-design Neuroevolution Platform
for Autonomous Learning in Edge Device

Sheng-Chun Kao
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA

felix@gatech.edu

Tushar Krishna
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA

tushar@ece.gatech.edu

Abstract—The true potential of AI can be realized once
we move beyond supervised training using labelled datasets
on the cloud to autonomous learning on edge devices. While
techniques like Reinforcement Learning are promising for their
autonomous learning ability, they exhibit high compute and mem-
ory requirements due to gradient computations, making them
prohibitive for edge deployment. In this paper, we propose E3, a
HW/SW co-designed edge learning system on a FPGA. E3 uses a
gradient-free approach called neuro-evolution (NE) to evolve the
neural network (NN) topology and weights dynamically. The NNs
evolved using NE are highly irregular, and a population of such
NNs need to be evaluated quickly in order for the NE algorithm
to make progress. To address this, we develop INAX, a specialized
accelerator inside E3 for efficient irregular network computation.
INAX leverages multiple avenues of parallelism both within and
across the evolved NNs. E3 shows averaged 30× speedup than
CPU-based solution across a suite of OpenAI environments.

I. INTRODUCTION

Deep Neural Networks (DNNs) have surpassed human
performance in many tasks such as image recognition and
speech processing. The common scenario of AI deployment
today is to train hand-tuned DNN models on the cloud on
GPU clusters, and deploy the trained model for inference
on the edge over accelerators [6], [9], [1]. These inference
accelerators enable low latency and high energy-efficiency de-
ployments hardware datapaths customized for running DNNs.

The focus of this work is on an emerging deployment
scenario that we call autonomous learning. This encapsulates
two use-cases. The first, that we call model-tuning, is one
where a trained model deployed on an edge device (say a self-
driving car or drone) needs to be tuned further for the inputs it
encounters. This use-case is common in robotics applications,
since the environment is full of variance (say a robot trained
to walk on grass but now encounters sand); it becomes
inefficient to collect all the training data beforehand for a
perfect model. Moreover, transmitting new data samples to
the cloud everytime, invoking a training loop, and beaming the
updated model back is inefficient because of the transmission
bandwidth and the delayed reaction to the environment, which
can be catastrophic for tasks with real-time requirements. A
better strategy is to have an adequate model that trained on
generic environment and continuously train it on the target
environment. The second, that we call model-replacement is
the use-case of continuous learning where an autonomous

agent is deployed and given new tasks for which no trained
model exists (say a robot/drone deployed in remote regions).
Here, relying on constant connectivity to a backend cloud for
training is infeasible or insecure. In summary, autonomous
learning on the edge is needed because the tasks on the edge
are often full of diversities and with unknown complexity; in
contrast to the cloud learning [16], [2], where the learning
data are often well organized (i.e., labeled) and the task is
well defined.

This naturally raises two questions: (i) what algorithm do
we use for autonomous learning, and (ii) what edge system
do we build for running this algorithm. On the algorithmic
end, federated learning (FL) and reinforcement learning (RL)
have gained popularity for these use-cases. In FL, each edge
device learns locally starting from a generic model and pe-
riodically transmits the update to the cloud. However, FL
requires a pre-defined task and a pre-defined DNN model
structure - this can serve the model-tuning scenario, but not
the model-replacement scenario. RL [7], [26] offers promise
for the model-replacement scenario where the target model
architecture is unknown. It has shown successful demonstra-
tions for strategy games [40], robotics [17], and machine
translation [45]. However, RL approaches [37], [28], [13],
[21], [44], [18], [46] still rely on human-picked and tuned
DNN architectures as the underlying model, based on the
practitioners’ understanding of the tasks, making it challeng-
ing for autonomous learning. In addition to the algorithmic
challenges, both FL and RL rely on gradient computations
and updates via backpropogation for the model update, which
is known to be highly compute and memory heavy, taking up
to hundreds of GPU hours [52] on cloud servers, and thus
infeasible for running directly on a low-power edge device.

In this work, we leverage a technique that has shown
promise on both the algorithmic and system fronts called
Neuro-evolution (NE). NE relies on gradient-free approaches
like genetic algorithms (GA) or evolutionary strategies (ES) to
evolve the model in response to stimuli from the environment,
instead of backpropogating error gradients. NE approaches
have demonstrated competitive convergence and accuracy as
RL [35], [43]. It can thus work for both model-tuning and
model-replacement use-cases. Moreover, prior work [36], [24]
has shown the promise of NE for edge learning due to its low

1

memory footprint and opportunity for compute parallelization.
One challenge with gradient-free methods like NE, however,

is that they require huge amounts of evaluation computations1

as a replacement of backpropogation, demanding a super
efficient inference accelerator. However, self-evolved network
topologies from NEs are often irregular, not structured like
hand-designed CNNs and Multi Level Perceptrons (MLPs),
which makes off-the-shelf inference accelerators unsuitable. In
this paper we demonstrate a closed-loop FPGA prototype of
a NE-based on-device autonomous learning system. Our key
novelty is an inference accelerator (running on the FPGA)
for irregular NNs, interacting with the environment and an
evolution engine (both running on the CPU).

The primary contributions of this work are as follows:
• We profile a NE algorithm called NEAT [42] to identify

opportunities for HW-SW co-design. We also contrast it
against two popular RL algorithms in terms of conver-
gence, runtime and network complexity.

• We propose a new irregular NN accelerator called INAX
with high adaptability to different irregular NN topologies.
We investigate parallelization opportunities when running
irregular NNs within INAX, and develop heuristics for
enhancing utilization.

• We integrate INAX into a light-weight on-device au-
tonomous learning platform, E3 (Eval-Evol-Engine), en-
abling efficient human-off-the-loop edge training.

• We prototype E3 on a Xilinx ZCU104 board, and observe
averaged 30× speedup over a SW-only solution across a
suite of OpenAI environments.

II. BACKGROUND AND MOTIVATION

In this section, we provide background on relevant learning
techniques, and qualitatively contrast them in Table I.
A. Deep Learning (DL) Techniques

Supervised Learning. Supervised learning are widely used
in regression, image classification, object detection, and speech
recognition. The learning scheme required a pre-collected
dataset with label (e.g., ImageNet [8]), a pre-defined DNN
structure (number of layers and per-layer shape), and a set
of training hyperparameters (optimization algorithm, learning
rate). When training, we execute inference on the batched input
data and evaluate the error with their corresponding labels.
Conventionally, we use gradient descent to update the weights
in DNNs and train until the error converges.

Un-supervised Learning. Un-supervised learning requires
a pre-collected dataset (but without label), a DNN or ML
model, and hyperparameters. Clustering is one common un-
supervised learning algorithm, where K-mean [3], expected
maximization [4] and other ML algorithms [32], [51] are used.
One significant challenge for these algorithms is that their
performance are heavily dependent on hyperparameters such
as number of cluster or number of optimizers, which often
require manual-tuning to adapt to different tasks.

1Evaluation is akin to inference phase of NN, where forward pass through
the NN is performed to determine a reward for the task at hand.

TABLE I
COMPARISONS OF ALGORITHMS.

DL RL EA NEAT
Continuous

learning
Not supported

(conventionally) Supported Supported Supported

Data Labeled/unlabeled Unlabeled Unlabeled Unlabeled
Network

structures Manual Manual Manual Automatic

Memory
overhead High High Light Light

Compute Heavy (BP) Heavy (BP)
Low

No-BP
(Heavy influence)

Low
No-BP

(Heavy influence)

Task
flexibility

Limited to tasks
that the data can be

pre-collected

Flexible to tasks but
a pre-defined

network structure is
needed for each task

Flexible to tasks but
a pre-defined

network structure is
needed for each task

Flexible to tasks
and flexible

autonomously-
tuned network

structure

Semi-supervised Learning. Semi-supervised learning, such
as Generative Adversarial Networks (GANs) [15], [27], use a
small amount of labelled data and boost the model perfor-
mance with unlabelled data.

Conventionally, for supervised, autoenconder in unsuper-
vised, and semi-supervised learning, we use backpropogation
(BP) to update the weight of the DNN models. BP propagates
the gradient of the error from output layer to input layers.
To accomplish the calculation in the backward path, we need
to store the intermediate values (weight, activations) along
the forward path, which makes BP extremely memory and
compute intensive.

B. Continuous Learning Techniques

Deep Reinforcement Learning (RL/DRL). RL is often
used in a continuous learning scenario, where the agent in
RL interacts with the environment and updates its policy
to maximize the expected reward/fitness feedback from the
environment. The policy is often abstracted with a DNN,
whose weights are updated according to the fitness. DRLs
such as DQN [31], A2C [28], PPO2 [37] and others[13],
[21], [18], [46], [44], have found great success in robotic
controls [17], playing AI game [30], or playing chess at human
levels[40]. However, DRLs are gradient-based methods and
require BP for training the DNN, leading to high computation
complexity and high memory requirement. Moreover, in many
DRLs a large replay buffer, which stores the experiences along
the episodes, are often required. This intensifies the memory
requirement.

Evolutionary Algorithms (EA). EAs work in the same
setting as RL, where the agent interacts with the environment
continuously and update its solution to maximize the fitness.
Recent research from OpenAI [35] and Uber AI lab [43]
have shown EA techniques demonstrate high scalability for
parallelization, and hence can lead to shorter training time
than DRLs at similar accuracies. In general, EA is gradient-
free without BP, and thus has lower algorithm complexity and
memory requirement than DRL. However, the trade-off for
gradient-free is more instances of inference to evaluate the
performance, i.e., it is a training scheme relieving the memory
overhead and computation of BP, but posing more pressure on
the number of computation in inference.

2

TABLE II
TERMINOLOGY IN NEAT.

Term Description

Gene
Basic building block of NN component (node/connections).
Node gene: node bias value, node activation.
Connection gene: Linkage between nodes, weight of the linkage.

Genome
(Individual)

A sequence of genes that describe a complete NN.
Each NN is treated as an individual that is evaluated independently.

Elite A set of individuals that has the highest evaluated fitness.

Population
(Generation)

An entire set of individual forms a population (one generation).
The populations evolve with time by selecting the elites and
mutating/crossovering intra populations.

SelectSpeciateMutate

Evaluate
Evolve

Achieve
fitness

Start

Output Yes No

(a) NEAT algorithm flow (b) Timing profile1 2

3.1%

96.9%

Evolve

Evaluate

CreateNetCrossover

Fig. 1. (a) The algorithm flow and (b) timing profile of NEAT.

C. NEAT

In this work, we consider an branch of EA techniques
called Neuro-Evolution of Augmented Topology (NEAT) [42]
that uses GAs internally to evolve a NN in response to the
reward. While some ES and GA methods [35], [43] require a
human-defined network topology and only evolve weights (like
DRL), NEAT [42] evolves and optimizes both the topology
and weights. Hence, it can effectively adapt to tasks with
different complexities and potentially find smaller NNs with
the same performance (through inherent pruning [14]), making
it promising for edge deployment. Table I summarizes different
characteristics of DL, RL, EA and NEAT. We perform a
quantitative comparison of RL and NEAT in Sec. III.

Terminology in NEAT. We list NEAT-specific terminology
we will use in the paper in Table II.

Initial state of NEAT. The algorithm starts with the basic
two layer network: input layer and output layer, where the
number of nodes is decided by the states (inputs) and actions
(outputs) respectively. The network evolves with time, adapt-
ing to the task.

Algorithmic Flow of NEAT. The algorithm flow of NEAT
is described in Fig. 1(a), and its major functions are listed
in Table III. At the start, we have a population of genomes.
“CreateNet” decodes those genomes to NNs. “Evaluate” runs
inference and calculates fitness value of each NN. Next,
“Evolve”, using GA operators like “Mutate”, “Crossover”,
and “speciate”, to perturbs the population and reproduces
the next generation of population. More specifically, “evolve”
selects some well-performed individuals as elite parents; “mu-
tate” reproduces children by tweaking genes of elite parents;
“crossover” reproduces children by randomly mixing genes of
two elite parents. Then in the pool of the current population
and its reproduced children, “speciate” divides them into
species by their similarity of topology. This is done to ensure
diverse evolved traits survive through generations, even if their
genomes do not perform well initially. Finally, “evolve” selects
the new population out of each species to enter the next
generation. These “evaluate” and “evolve” loops go on until
the fitness value is achieved.

TABLE III
THE MAJOR FUNCTIONS IN NEAT.

Phase Function Descriptions
Evaluate Evaluate Inference the NN and compute its fitness through Env.

Evolve

CreateNet
Decode the genes to nodes and connections, solve the
dependency among nodes, and formulate them into NN
topology.

Mutate Perturb a parent’s gene to reproduce individuals.
Crossover Blend two parents’ gene to reproduce individuals.

Speciate
Classify individual by their topology similarity so that
they only compete within group. It protects the young
individuals from elimination before well-evolved.

Interactive
Environment

(Env)

Applications that require the autonomous agent to make
a sequence of decisions on the tasks interactively. The
environment responds with a reward or fitness, that
NEAT uses to improve its decisions via evolution.

TABLE IV
ANALYSIS OF OVERHEAD IN ALGORITHMS*.

RL (A2C) EA (ES/GA) NEAT
Op. Forward 33K 33K 0.1K

Op. Backward 32K 0 0
Local Memory 268K (B) 132K (B) 0.4K (B)

*Estimates for the performed operations (Op.) and required memory when
experimenting across a suite of OpenAI environments.

III. ALGORITHMIC PROFILING FOR RL AND NEAT

In order to identify HW acceleration opportunity, we profile
the algorithmic performance (i.e., convergence), runtime, and
underlying neural network complexity (number of nodes and
connections) of NEAT [25] and contrast it against two popular
RL algorithms, A2C (Advantage Actor Critic) [28] and PPO2
(Proximal Policy Optimization) [37], with open-source imple-
mentation [19]. Table IV contrasts the compute and memory
overhead of NEAT vs A2C and traditional EA methods.
A. Profiling of RLs

We compose the RL algorithms with two configurations for
the underlying actor and critic networks: Small with two layers
of MLPs with 64 nodes each and Large with three layers of
MLPs with 256 nodes each, and run across 6 different tasks
(environments) in Open AI gym [5]. For each of the tasks,
we set a required fitness value and the algorithm stops when
the fitness is achieved, or when it converges.

Algorithmic performance. Since different tasks have differ-
ent required fitness, we normalized the achieved fitness to the
range of [0, 1] in Fig. 2(a-c). When the algorithm achieves
1.0, it means it finishes the task. We observe that PPO2-small
completes more tasks than A2C-small. Increasing the size can
potentially increase the learning capacity, however requiring
more training time to converge. PPO2-large achieves more
tasks over PPO2-small with the cost of larger runtime.

Runtime. The RL runtime can be roughly divided into two
part Forward (or called predict) and Training (including the
backpropagation and the rule updates of RL algorithms). Fig. 3
shows the time profiling of the two RLs with small and large
networks, they show that the Training part accounts more
percentage of the runtime, which is around 60%.

Network complexity. Finally, we show the number of nodes
and connections of the small and large network that we use
in RLs in Table V.

3

Runtime (secs)Runtime (secs) Runtime (secs)

Fi
tn
es
s

Runtime (secs)

NEATA2C-small PPO2-small PPO2-large

Fig. 2. The achieved fitness trace across runtime of (a) A2C-small, (b) PPO2-small, (c) PPO2-large and (c) NEAT. The red box are the tasks that did not
reach or converge to near required fitness values.

BackProp Forward

55.0%
45.0%

Forward

1 2

65.6%
34.4%

Training(BackProp, RL update)

(a) A2C-small (c) PPO2-small 1 21 2(b) A2C-large (d) PPO2-large

43.7%

56.3%

39.5%

60.5%

Fig. 3. The time profiling of two RL algorithms will small and large network:
(a) A2C-small, (b) A2C-large, (c) PPO2-small, and (d) PPO2-large.

TABLE V
THE COMPARISONS OF NETWORK COMPLEXITY (NUMBER OF NODES AND

CONNECTIONS) OF SMALL, LARGE NETWORKS USED IN RLS, AND
EVOLVED NETWORKS IN NEAT .

of nodes/connects Acrobat Bipedal Cartpole Lander Mount.Car Pendulum

Sm
al

l Nodes 137 156 133 140 133 132
Connections 4,672 5,888 4,416 4,864 4,416 4,352

La
rg

e Nodes 5,443 6,660 5,185 5,636 5,187 5,121
Connections 1,327,872 1,639,424 1,261,824 1,377,280 1,262,336 1,245,440

N
EA

T Ave. nodes 10.8 32.2 6.3 13.6 5.7 5.2
Ave. connections 16.4 79.8 3.6 17.0 5.0 19.2

B. Profiling of NEAT

Algorithmic performance. In Fig. 2(d), we show that NEAT
can achieve the required fitness under the set runtime con-
straint for all the environments we tested against.

Runtime. As shown in Table III, NEAT primarily comprises
two parts, “evolve” and “evaluate” , which are analogous to
Training and Forward in the RLs. From Fig. 1(b), we can
see that NEAT has a drastically different timing profile from
the RLs. The “evolve” (the counterpart of Training in RLs,
which takes 60% of runtime)) only takes 3% of the runtime
in NEAT; instead, “evaluate” occupies the majority of the time.
NEAT has a light “evolve”, and to compensate for it, includes
a much heavier “evaluate”. This is because “evaluate” is called
for all networks in the population; meanwhile “evolve” is
only called once when all the entire population are evaluated.
This observation motivates this work. By accelerating the
“evaluate” part in HW, we could potentially have both “evolve”
and “evaluate” light and fast. On the other hand, accelerating
Forward of RLs offers less margin for performance gain as it
would be limited by Training which is expensive to accelerate.

Network complexity. From Table V, we observe that NEAT
evolves fairly small networks and still achieves compatible
performance with RL (as Fig. 2 demonstrates), compared to
the MLP policy networks we use in RL experiments. This
is because “evolve” inherently incorporates a pruning process.
However, if we initiate RLs directly with a small network with
similar complexity as the ones in NEAT, the RLs were unable

to converge, consistent with the lottery ticket hypothesis [12]2.
Summary. NEAT can find and train neural networks with

lower complexity but compatible performance comparing to
RLs, making it a promising learning algorithm for edge de-
vices. NEAT trades of the expensive Training step in RLs with
more “evaluate” (i.e., inference) steps which can become the
performance bottleneck. To this end, we propose to accelerate
NEAT in a HW/SW co-design scheme. Our runtime profiling
results drive our partition of workload: we keep “evolve” on
the CPU, and offload the “evaluate” to a FPGA accelerator. A
key challenge for the accelerator is that the NNs evolved by
NEAT are highly irregular, as we discuss next.

IV. E3-INAX

We propose a HW/SW co-designed platform called Eval-
Evol-Engine (E3) with a novel accelerator called INAX for
irregular NNs, enabling on-device learning with low latency
and high energy efficiency.

A. Challenge: Irregular and Sparse NNs.

Though “evaluate” is fundamentally NN inference, acceler-
ating it in HW is not trivial because of a fundamental chal-
lenge: unlike modern hand-designed NNs that have a regular
layer-by-layer connectivity, as shown in Fig. 4(b), the networks
generated via mutation and crossover can have arbitrary sparse
connectivity between neurons, resulting in irregular NNs. In
other words, connections can span across layers, as shown
in Fig. 4(a)(c). The irregular link across layer incurs dummy
node padding in standard DNN accelerators, as shown in
Fig. 4(d), causing their inefficiency. Fig. 4(g) shows the trace
of density change along generation in a suite of OpenAI env.
The trace indicates the dynamic change in sparsity of the
NNs that any accelerator would need to handle. Fig. 4(e) and
(f) show the distribution of the degree of the node and the
number of nodes in each layer across all generations in the
evolved NNs, which emphasizes the irregularity of NNs. These
make the evolved NNs different from NNs being designed
today with pruning which, though sparse, still retain regular
layer to layer connectivity. Thus off-the-shelf NN accelerators
like systolic arrays [20] that optimize for dense matrix-matrix
multiplications, and sparse accelerators [49], [33], [34] that
still try to keep model weights “stationary” to exploit reuse
cannot directly work. In this work, we design an accelerator for

2Pruning from large network to small network is always better than training
a small network.

4

(a) irregular (sparse) MLP.(b) regular (dense)MLP. (c) An indiv. in pendulum.

De
ns

ity
 (%

)

of generations
(g) Density across generations

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

In
te

ns
ity

Number of nodes in a layer

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

In
te
ns
ity

Degree
(e) The distribution of degree of nodes (f) The histogram of number of nodes in a layer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

In
te
ns
ity

Degree

acrobat bipedal cartpole lunalander mountaincar pendulum rocket_lander

De
ns

ity
 (%

)

(d) The dense MLP counterpart of (c).

Fig. 4. The example topology of (a) irregular (sparse) MLP and (b) regular (dense) MLP. (c) An example of individual of pendulum at the 50th generation,
where density exceed 100% and (d) its dense MLP counterpart †.(e) The distribution of degree of nodes and (f) the statistics histogram of number of node in
a layer of INAX across a suite of OpenAI Env. (g) The density * of the population across generations of NEAT in a suite OpenAI environments. The lines
stop when the solutions converge.
†The transparent nodes are dummy nodes needed for (d) to owns equivalent calculations as in (c) when executing in regular accelerator (e.g. Systolic array).
* Density: (# of conns in evolved NN)/(# of conns in dense MLP counterpart). E.g. in (a), Density=(9/18).

CPU
(evolve)E

n
v

SW

PU

PU

PU

PU PU

PU

...

...

...

Sig

Input

Weight

...

Input

Weight

Output

Values buffer
Weight buffer

PE

PE

PE

PE PE

...

...

...

INAX (evaluate)
PU

HW

E3

PE

DSP
W

Vo

Vi

Act
PE

DSP
W

Vo

Vi

Act
PE

Output
DMA

DRAM

Fig. 5. The architecture of E3.

irregular NNs and get performance by exploiting parallelism
within and across genomes, as we discuss later in this section.

B. Eval-Evol-Engine (E3)
1) Architecture: The HW/SW division of E3 is shown in

Fig. 5. E3 is partitioned into SW and HW part, and we run
SW on the CPU as a master and HW on the FPGA as a slave.
The “evolve” portion sits in the SW, while INAX runs the
“evaluate” portion in the HW division. The data are passed
between them by Direct-Memory-Access (DMA). DMA, as
a slave of CPU, moves data in and out between INAX and
DRAM via input, weight, and output channels. CPU and INAX
pass the sync signal of “start” and “done” via sig channel.
“Env” is an OpenAI environment program running on the
CPU, which is the benchmark our system is interacting with.

2) Dataflow: E3 implements the NEAT algorithmic flow,
shown earlier in Fig. 1(a). In the “evaluate” phase, CPU sends
a “start” signal via sig channel. CPU passes two groups of data
to INAX through DMA, which are the NN configurations of
an populations via weight channel and the input data gathered
from “env” via input channel. After inferences are completed,
INAX passes the result back to CPU via output channel and
send a “done” signal via sig channel. Then, CPU uses the
results to interact with “env”, gathers the “env” feedback,
sends them to INAX as the next input values, and finally sends
a “start” signal. INAX then inferences again. This loop iterates
until the “env” terminate and fitness values are calculated.
Afterward, E3 switches to “evolve” phase and CPU takes
over the job to mutate, crossover, speciate, and create NNs.
INAX and CPU cooperate to proceed “evaluate” and “evolve”
multiple times until the desired fitness value is achieved.

C. Irregular Network Accelerator (INAX)

1) Architecture: As shown in Fig. 5, INAX has three in
channels: for weight, input and signal and one out channel.
In INAX, there are two major building blocks - Processing
Unit (PU) and Processing Element (PE). INAX is composed
of a cluster of distributed PUs working independently. A PU
itself is composed of a cluster of distributed PEs. PUs and
PEs are designed for different levels of parallelism - across
individual NNs in a population, and across nodes within a
NN, respectively, which we will discuss in Sec. V. INAX has
a central controller of the PUs array, which syncs up the HW
status with CPU via sig channel.

2) Dataflow: INAX accounts for “evaluate”, which we
break down to two phases: set-up phase and compute phase.
In the set-up phase, INAX receives a batch of individuals
(NN configurations) from weight channel. The batch size
of individuals is controlled to match the number of PUs in
the accelerator. INAX’s controller dispatches the individuals
to their assigned PUs. According to the individuals’ NN
configuration, each PU configures an NN topology ready for
inference inside itself. Afterward, INAX enters compute phase.
It receives input values from the input channel and scatters
them to their responsible PUs. Receiving the input values,
each PU utilizes its own NN to run inference and outputs
the result values. INAX gathers the result values and delivers
to the CPU. Then one iteration of the procedure completes.

It is worth noting that each PU reuses the same NN to
execute inference on a series of input values, which is typical
in RL environments till the “env” terminates (e.g., game ends).

D. Processing Unit (PU) in INAX
1) Architecture: Each PU is responsible for running the full

“evaluate” for an individual of the population. A PU comprises
of a cluster of PEs (Sec. IV-E) for parallel computing of
different nodes within the NN, a weight buffer and a value
buffer.

Weight buffer. The weight buffer restores the NN config-
uration, including the description of network topology, the
bias value and activation function of each node, and the
weight values of each connection. In the common case of

5

MLP, weights are not reused, and hence it is less helpful to
keep them in local memory. However, the weight buffer is a
specialized HW design for accelerator in the system interacting
with RL environments, where NNs are reused throughout the
“env”. It gives us the reuse opportunity of the weight values.
Hence, we keep weights locally.

Value buffer. The value buffer restores all the intermediate
activations, which is a special requirement for irregular NN,
because the intermediate activations could be used by all the
subsequent layers.

2) Dataflow: In the set-up phase, PU decodes the data re-
ceived from weight channel into NN configurations (including
topology, activation functions, and bias) and weights. Both of
them are kept in the weight buffer. Then, PU configures a
network topology based on the decoded NN configuration. In
the evaluate phase, PU parallelizes the computations across
nodes of the NN.

E. Processing Element (PE) in INAX
1) Architecture: Each PE is composed of a DSP and an

activation function unit. DSP is responsible for MAC on
the weight and inputs, and addition on a bias value. The
components are executed in a pipeline manner.

2) Dataflow: We design an output-stationary dataflow [6],
where each PE is responsible for computing the output of an
entire node. The partial sum of MAC result is accumulated
locally, over time. The PE sends the accumulated summed
value to an internal activation function unit. The result output
is then stored locally in the value buffer.

Our choice of dataflow is based on the following analysis.
Evolution generates irregular feed-forward MLP NNs, which
formulates the topology like Fig. 4(c), where each node can
have connections with nodes to any nodes before it. We follow
the definition in [6], which categorized the dataflow into three
main types: input stationary (IS), weight stationary (WS), and
output stationary (OS). The stationary implies which data we
keep locally and exploit their reuse opportunity. To begin with,
since an MLP has no weight reuse opportunity, WS is not
effective. IS requires a partial sum adder and a local buffer for
each egress nodes. However, when the network is irregular, the
worst case of number of egress nodes is the number of total
nodes in NN. This dataflow is HW-unfriendly, since HW needs
to meet the worst case, leading to resources over-provisioning
at most of the life time. In contrast, we find OS is more HW-
friendly in terms of resource requirement on the problem of
irregular NN. It accumulates the partial sum locally, and hence
prevents over-provisioning. It is important to note though that
the time taken to compute each output can be variable at each
PE, depending on the node size. We discuss this next.

V. PARALLELISM STRATEGIES IN E3

INAX supports two levels of parallelism. Nodes within an
evolved NN can be run in parallel across PEs, while individual
NNs in a population can be run in parallel across PUs. We
discuss the design time problem of choosing HW configu-
rations (number of PUs and PEs) that can achieve higher
HW efficiency (utilization rate) next However, the dynamic

1 4 7 10 13 16 19
Num. of PEs

2.5

5.0

7.5

10.0

(M
)C

yc
le

s

20

40

60

80

PE
 U

til
iza

tio
n(

%
)Run Cycles

PE Utilization

(a) Num. of output nodes=10

1 4 7 10 13 16 19
Num. of PEs

5

10

(M
)C

yc
le

s

40

60

80

PE
 U

til
iza

tio
n(

%
)Run Cycles

PE Utilization

(b) Num. of output nodes=15

Fig. 6. Parallelism across PEs.

(a) Num. of Individuals=200 (b) Num. of Individuals=300

Fig. 7. Parallelism across PUs.

characteristics in Fig. 4(e) and the fluctuations in Fig. 4(g) also
infers the difficulty to find a heuristic for HW configurations
that provide good parallelism across generations. In this study,
we are also providing two practical heuristics through analysis.

Definition of HW efficiency (Utilization rate). Since
parallelism comes at the cost of more resource provisioning,
we evaluate the efficiency of each parallelism strategy on
resource (r) by its utilization rate (U(r)):

U(r) = Tactive(r)/Ttotal(r), (1)

where Ttotal(r) is the total running time of all provided
resources (r), and Tactive(r) is the total running time of the
active (functioning) resources.

A. Parallelism Across PE

Inside one PU, we can put in multiple PEs to increase the
parallelism. More PEs bring low latency, but a higher chance
of lower utilization rate. When designing PEs parallelism,
to prevent over-provisioning, the number of PEs should not
exceed the number of independent nodes, which can be
inferred by the number of nodes in each layer. This implies
that a good PE assignments relies on prior-knowledge of the
deployed NNs, which is challenging in our use case because of
three issues: 1) dynamic network topology, 2) PEs alignment,
and 3) synchronization.

1) Dynamic network topology: NN topologies could have
high variance both within and across populations.

2) PEs alignment: Since INAX owns an output-stationary
dataflow, assuming we have n PEs and m nodes in certain
layer, we need dm/ne iterations to complete computation of
this layer. It implies the nonalignment (non-divisible) between
NN nodes (m) and PEs (n) leads to under-utilized iteration.

3) Synchronization: For the output stationary dataflow, the
execution time of a PE depends on the number of ingress
connections. However, an irregular NN will cause variable
number of ingress connections, and hence variable execution
time of PEs across a PU. However, to preserve the correctness
of a feed-forward NN calculation, we need to keep the PEs

6

PE PE

PE PE
p=30 Indv.

k=4

PU

PUOutput layer

Fig. 8. Example of parallelism across both PU and PE, with 3 PUs in INAX
and 4 PEs per PU. Therefore, 3 individuals are parallel computed by 3 PUs.
In each PU, 4 nodes of the sitting individual are parallel computed by 4 PEs.

synchronized, before the next layer computation begins. This
causes some PEs to remain idle, waiting for others.

Proposed Heuristic. Fig. 4 (f) shows the statistics of layer
with different number of nodes, which infers the parallelism
opportunity across PE. The variety of number of nodes in a
layer across time increase the difficulty to compose a strategy
for PEs configuration. We propose a heuristic with analysis,
next. Even though the NN topologies in E3 are dynamic, the
shape of their input and output layers are constant throughout
the generations. They conform with the size of input data and
the size of output space (action space) respectively. Therefore
it gives us opportunity to optimize the PEs assignment based
on those two layers. We chose to size the PU based on the
number of nodes in the output layer because of the chosen OS
dataflow.

Assuming the output layer has k nodes, to preserve good
utilization rate, 1) the heuristic is to assign k PEs to each
PU cluster. Moreover, 2) if we are more resource-restricted,
we can also use dk/2e, dk/3e, and so on, number of PEs,
increasing the number of iterations.

Evaluation. We show the runtime and PE utilization across
different number of PE in a cluster in Fig. 6.3 It is obvious
that the runtime decreases with the increase of number of PEs,
since we are providing more computing power. In most case,
PE utilization rate, U(PE), decreases with the increase of PEs,
which is expected because of the thee above mentioned issue.
However, we can notice some local peak points on the U(PE)
curve, which has better U(PE) locally. Fig. 6(a) has 10 output
nodes and it has a local peak at the parallelism number of 10.
Likewise for 15 output nodes in Fig. 6(b). Moreover, we can
notice some smaller local peak at the parallelism points of
dk/2e, dk/3e, and so on, where k is 10 and 15 respectively.

B. Parallelization Across PU

While a cluster of PEs exploit parallelism of independent
nodes, a cluster of PUs exploits parallelism of individuals.
When designing number of parallelism of PUs, it is without
a doubt that if we put more PUs in HW, the runtime will
decrease. However, with the chance of lower PU utilization
rate. To keep good PU utilization rate, U(PU), there are two
challenges: 1) synchronization issue from variance of 1) NNs
and 2) “env”.

1) Synchronization issue from variance of NNs: Since each
PU deals with different individuals with different NN topology,
their inference latency is different. When synchronising, it

3If not specified, the default parameters are: num individuals:200, num
inputs:8, num outputs:4, num hidden nodes: 30, sparsity rate:0.2, num PU:1,
num PE:1

could lead to some PUs, dealing with complex network,
lagging the finishing time of the whole cluster, while other
PUs are waiting.

2) Synchronization issue from variance of “env”: Different
individuals react differently to the “env”, and hence their
lifetime in the “env” is different. For example, some bad
performance individuals can fail, terminate early, and stay idle
while the other populations are still running.

Proposed Heuristic. There are still heuristic we could
follow for better PU utilization. The number of populations, p,
inside E3 is an algorithm parameter, predefined before the start
of NE. Hence, we could optimize upon it. 1) We can assign p
PUs to exploit the maximum PUs parallelism. However, 2) if
we are more resource-restricted, we can use a fraction as well.
Since population size in NEs is generally large, we may not be
able to provide full PU parallelism due to resource constraints.

Evaluation. From the experiment of runtime and PU uti-
lization across different number of PU,3 as shown in Fig. 7,
we could find local peak points on the U(PU) curve. As
shown in Fig. 7(a), where we have 200 populations, the peak
points are at 200, 100, 67, 50, and so on, which correspond
to PUs number of dp/2e, dp/3e, dp/4e, dp/5e, and so on.
This validates our heuristic. To illustrate this, we take p/2
(100 PUs) case as an example. It finishes in two iterations.
In contrast, if we choose to use 99 PUs, it requires three
iterations, while 98% of PUs are idle in the last iteration.

Parallelism Across PU and PE We could also parallelize
across PU and PE together, by following the heuristics for PUs
and PEs simultaneously. An illustrative example is shown in
Fig. 8. Since PE is the basic build block of INAX, we use
U(PE) as our criterion. We do not plot quantitative results in
the interest of space, but we observed the response surface of
U(PE) following the expected behaviors we described above.

VI. EVALUATION

A. Setup

We ran multiple environments provided in OpenAI [5],
using a mix of control benchmarks and Atari games4. We
experimented and compared the performance of three settings:
1) SW-based NE (E3-CPU), where all the functions ran in
the CPU, 2) E3-INAX, where “evolve” ran on the CPU, and
“evaluate” ran on INAX, and 3) a GPU implementation (E3-
GPU), where “evolve” ran on the CPU and “evaluate” ran
on the GPU. For all three settings, “env” is another program
on the CPU. NEAT algorithm is generally not efficient on
GPUs [36], because of small batch size and dynamic topology.
However, we implemented E3-GPU as a reference comparison.

Configuration: The SW program was run on the desktop
with 8th generation intel i7 CPU (@2.3GHz) and nVidia
GTX 1080 GPU. The INAX HW was implemented and ran
in Xilinx ZCU104 board with Zynq UltraScale+ XCZU7EV
device (16nm). We measured the power of CPU by Intel power
gadget, of GPU by nvidia-smi utility, and of FPGA by Vivado
post-routing power analysis.

4Env1:cartpole, Env2:Acrobot, Env3:moutain car, Env4:bipedal, Env5:lunar
lander, Env6:pendulum

7

Env1 Env2 Env3 Env4 Env5 Env6

(a) Runtime analysis (b) Experiment runtime results (c) Normalized time (d) E3 timing profile

E3-CPU

E3-INAX

E3-CPU E3-GPU E3-INAX

Ave. 1 18.0 0.03
E3-CPU E3-GPU E3-INAX

Env1 0.3 (s) 11.7 0.02
Env2 43.3 1,472 0.7
Env3 115.4 2,971 2.4
Env4 164.9 3,877 2.8
Env5 220.1 3,242 3.4
Env6 527.0 9,749 20.9

Fig. 9. (a) The runtime analysis of INAX. The experiment results across a suite of OpenAI env: (b) runtime comparisons of three platforms, (c) their
normalized runtime and their function time breakdown (E3-GPU is too large to be displayed in this figure). (d) E3 timing profile.

TABLE VI
COMPARISONS WITH CONTINUOUS LEARNING ACCELERATORS.

FA3C [9] PPO-FPGA [29] CLAN [27] GeneSys [36] E3

algorithm (RL) A3C (Need BP) (RL) PPO (Need BP) (EA) NEAT (No BP) (EA) NEAT (No BP) (EA) NEAT (No BP)

Internal
NN

Regular
Fixed NN (Manual)

Regular
Fixed NN (Manual)

Irregular
Evolved NN (Autonomous)

Irregular
Evolved NN (Autonomous)

Irregular
Evolved NN (Autonomous)

Platform FPGA FPGA CPU ASIC FPGA

Scheme

HW/SW codesign
Inference: FPGA
BP: FPGA
Env: CPU

HW/SW codesign
Inference: FPGA
BP: FPGA
Env: CPU

Distributed learning
Inference: CPU
Evolve: CPU
Env: CPU

HW acceleration
Inference: ASIC
Evolve: ASIC
Env: CPU

HW/SW codesign *
Inference: FPGA
Evolve: CPU
Env: CPU

Memory
overhead

Large DRAM
Large on-chip SRAM

Large DRAM
Large on-chip
SRAM

Small DRAM
Small on-chip SRAM

Small DRAM
Small on-chip SRAM

Small DRAM
Small on-chip SRAM

Inference
accelerator

Standard systolic array
• Designed data layout for

BP.
• Designed data layout for

systolic array interface.
• Efficient for regular NN.

PE array
• Designed data

layout for BP.
• Efficient for

regular NN.

CPUs
• Distribute the

computations of both
training and evolutions
to a cluster of
Raspberry Pis

Standard systolic array
• Need special input-data-

alignment phase for standard
systolic array interface.

• Inefficient for irregular NN.

INAX (dynamic accelerator)
• Efficient for both regular and

irregular NN.
• Layer-level parallelism (across PE)
• Population-level parallelism

(across PU)

* Identify Inference dominates 97% runtime while Evolves takes only 3%. After HW/SW codesign opt., Inference achieves 30X speedup. The runtime of Inference is balanced to the same scale as Evolve.

Env1 Env2 Env3 Env4 Env5 Env6

Config
(PU, PE)

E3-INAX_a
(50, 4)*

E3-INAX_b
(64, 16)

DSP 400 (24%) 1,024 (60%)

LUT 6,173 (3%) 13,935 (6%)

FF 8,964 (2%) 20,358 (5%)

Freq. 100MHz 100MHz

Power 0.852 W 1.216 W

(a) Normalized energy (b) Resource utilization

E3-CPU

E3-INAX_a

E3-CPU E3-GPU E3-INAX_a

Ave. 1 71.6 0.03

Fig. 10. (a) The normalized energy expense of three platforms and the
breakdown of energy consumption in their functions (E3-GPU is too large
to be displayed in the figure). (b) The resource utilization in FPGA of two
set of configs
*PE number slightly change according to the pre-defined output nodes of different Env.
The number of output node (the PE number we use): cartpole:3, acrobar:3, mountain
car:3, bipedal:4, lunar lander:4, pendulum:1.

B. Runtime analysis in INAX

We first evaluate the resource utilization efficiency of INAX
by its runtime breakdown of two HW phases: set-up and
compute phase, where the compute phase is detailed into time
of “PE active” and “evaluate control”. The “evaluate control”
includes the total PE under-utilization time and miscellaneous
control time, including pipeline overhead and reading and writ-
ing of intermediate values. We show the normalized runtime of
INAX across different number of hidden nodes, which implies
the size of the network in Fig. 9(a)3. After normalization, the
ratio of the PE active time is the U(PE) that we defined
earlier in Sec. V, which also reflects the control overhead

PE Speedup (!"
#$"%)

1 12.6
2 8.6
4 5.6
8 3.7
16 3.0
64 7.5

(a) Required HW cycles (b) Speedup

8.
5E
+0
7

4.
5E
+0
7

2.
4E
+0
7

1.
6E
+0
7

1.
3E
+0
7

3.
2E
+0
7

6.
7E
+0
6

5.
2E
+0
6

4.
2E
+0
6

4.
2E
+0
6

4.
2E
+0
6

4.
2E
+0
6

0.0E+00
2.0E+07
4.0E+07
6.0E+07
8.0E+07
1.0E+08

1 2 4 8 16 64

HW

 C
YC

LE
S

PES

SA INAX

Fig. 11. (a) The averaged number of required HW cycles (in a suite of
OpenAI env: Env1-Env7) with different accelerator structures: Systolic Array
(SA) and INAX, across various number of PEs inside accelerators, and (b)
the speedups.

(set-up, evaluate control) when offloading to HW. The higher
the computation intensity (number of hidden nodes), the more
control overhead is hided, and the higher the U(PE).
C. Acceleration Benefit

The chosen gradient-free algorithm, NEAT, has the edge-
device friendly characteristics of low memory requirement
as discussed in Table I and Table IV, with the trade-off
of huge amount of evaluation computations. It leads to a
runtime bottleneck as described in Fig. 1(b), which makes
accelerating the evaluation a critical need. and we discuss it
next. In algorithm level, we set the number of population=200,
mutation and crossover rate=0.5, and start with no hidden
nodes. The INAX configuration is following the PE and PU

8

parallelism heuristics in Sec. V, where we picked PE=output
nodes and PU=50.

Fig. 9(b) shows the runtime of E3-CPU (the baseline), E3-
GPU (GPU acceleration), and E3-INAX (HW acceleration).
The irregularity and sparsity makes E3-GPU inefficient and
ends up requiring longer runtime than the baseline. However,
E3-INAX, housing an irregular network accelerator, can pro-
vide averaged 30× speedup over the baseline. Fig. 9(c) shows
how the main bottleneck function, “evaluate”, in the baseline
system is reduced in the E3-INAX system. After speedup, the
time for “evaluate” in E3 decreases to the same scale of the
time for other sub-function inside “evolve”. E3 has a more
balanced time distribution among each function, as shown in
Fig. 9(d), as a contrast comparison with the original timing
profile on E3-CPU in Fig. 1(b).

D. Energy Benefit

In the experiments, we evaluate the total energy expense to
complete the tasks. The results are summarized in Fig. 10(a).
E3-GPU consumes 71x more energy than E3-CPU, because of
its longer runtime and higher power. However, E3-INAX can
reduce the energy consumption by 97% comparing with the
baseline (E3-CPU).

E. FPGA utilization

The averaged FPGA resource utilization in the experiments
are shown as config E3 a in Fig. 10(b). We could also intro-
duce more resources for lower latency but higher chance of
under-utilization and higher energy such as E3 b in Fig. 10(b).

F. Effectiveness of INAX over GeneSys

We show the effectiveness of the dynamic characteristics
of INAX by contrasting with Systolic Array (SA) accelerator
structure used in GeneSys [36]. Since SA can also exploit
PU level of parallelism, we implement a PU-parallelized SA
for fair comparisons. The underlying SA is a 1-D systolic
array since we are executing MLP-type calculation. Across
the experiments, we use the same PU=50 as in Sec. VI-C. We
also experiment on different number of PEs in the underlying
accelerator. Fig. 11(a) shows averaged number of required HW
cycles (in a suite of OpenAI Env) of these two accelerators
with different number of PEs. SA’s performance is inferior
to INAX because of two reasons. First, the inherent sparsity
of NN incurs zero filling in SA, which decreases efficiency.
Second, the irregular link across layer incurs dummy node
padding as shown in Fig. 4(d), where SA needs to fetch
the node in previous layer and align them with nodes in the
current layer, leading to more execution time. In Fig. 11(a),
we can also observe the effectiveness of the proposed heuristic
in Sec. V-A, where we choose PEs according to number of
output nodes for higher PE utilization rate. Over-providing
number of PEs (8, 16, 64) will only result in more idle PEs
but not runtime benefit. On the other hand, SA, as a regular
accelerator, requires more PEs because of the dummy nodes
padding effect as mentioned above in the second point. SA has
the best performance at 16 PEs; however, it is still 3x slower

than INAX. Due to the flexible structure of INAX (Sec. IV-C),
it provides 3× to 12.6× speedup compared to SA.

VII. RELATED-WORKS

DNN Inference Accelerators. Many inference accelera-
tor design focus on analyzing and optimizing the dataflow
of ML workload. The dataflow comprises the computation
order,parallelization-strategy, and tiling strategy employed by
the accelerator. There are specialized HW design in the area
of ASIC, such as Eyeriss[6], ShiDianNao [9], NVDLA [1],
FlexFlow[22], and C-Brain[41]. Also, many FPGA-based ac-
celerator, featuring its flexibility, were proposed, such as
Caffeine [48], Cnp [10], and others [23], [11], [47], [39], [50].
However, they are targeting the conventional structured regular
NN layer, especially convolution layer, but cannot deal with
irregular NN. Many recent DNN accelerators also tackle sparse
inference efficiently, such as SCNN [33] and Cambricon-
X [49]. However, they still operate on layer-by-layer sparse
DNNs, and not for irregular NNs generated by NEAT as shown
in Fig. 4(a)(c). Irregular NNs also have activation sparsity,
which we did not investigate in this study and is ripe for future
work.

DNN Training Accelerators. Many modern DNN models
are trained on GPUs. However, in the RL tasks, GPUs are
generally not computation-efficient and energy-efficient[43],
[7], which is not friendly for edge device[36]. Cloud TPUs[20]
are specialized for training, but require structured NNs for
efficient computing, which is challenging in irregular NN case.
However, in the RL tasks, they are generally not as efficient
as in other DNN tasks such as supervised learning, because of
the frequent interaction with RL env and small batch size[43],
[7]. Moreover, GPUs and cloud TPU are not suitable for edge
device due to the high power consumption. Furthermore, both
of them are optimized for accelerating structured regular NN,
who becomes inefficient in irregular case.

Continuous Learning Accelerators. Table VI summarizes
contrast between these continuous learning accelators. FA3C
[7] builds an FPGA-based platform for an DRL algorithm,
A3C [29]. PPO-FPGA [26] accelerates an DRL algorithm,
PPO [38], with HW/SW co-design manner on FPGA. How-
ever, the BP step costs more buffer and high demand of
resources owing to the need of high complexity calculation,
which could become bottleneck when the NN scales up.
CLAN [24] utilizes Neuroevolution as underlying algorithm
for a distributed learning system on edge CPU, which is not the
focus of this paper. GeneSys [36] is an ASIC Neuroevolution
accelerator. However, GeneSys [36] used standard accelerator
for inference (“evaluate”), where irregular NN are executed
inefficiently. However, in this paper, we identify “evaluate” is
actually the bottleneck of NE-based algorithm, hence needing
a specialized irregular network accelerator for low latency, and
this work fulfills the need.

VIII. CONCLUSION

For continuous edge-learning, we identify a gradient-free
neuro-evolution algorithm, NEAT, as a good candidate for its
low memory overhead and no backpropogation, however, with

9

the trade-off of huge amount of evaluation. Unfortunately,
the NNs to be evaluated are often irregular, which makes
off-the-shelf inference accelerators not suitable. In this work,
we designed a specialized irregular NN accelerator, INAX,
integrated into an autonomous continuous edge-learning FPGA
prototype, E3, that uses HW/SW co-design to accelerate the
algorithm and balance workload between CPU and INAX. E3
achieves 30× speedup and 97% energy reduction across a suite
of OpenAI benchmarks. This work provides a promising path
toward the envisioning of ubiquitous edge learning.

ACKNOWLEDGEMENT

This work was supported in part by NSF Award 1909900
and a Google Faculty Award. We thank Ananda Samajdar for
the preliminary discussions on this idea and motivating us to
pursue this research direction.

REFERENCES

[1] “Nvdla deep learning accelerator,” http://nvdla.org, 2017.
[2] “Google speech to text,” https://cloud.google.com/speech-to-text, 2020.
[3] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed

numeric and categorical data,” Data & Knowledge Engineering, vol. 63,
no. 2, pp. 503–527, 2007.

[4] T. L. Bailey and C. Elkan, “Unsupervised learning of multiple motifs
in biopolymers using expectation maximization,” Machine learning,
vol. 21, no. 1-2, pp. 51–80, 1995.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[6] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–379,
2016.

[7] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated
deep reinforcement learning,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 499–513.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[9] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2015, pp. 92–104.

[10] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based
processor for convolutional networks,” in 2009 International Conference
on Field Programmable Logic and Applications. IEEE, 2009, pp. 32–
37.

[11] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A configurable
cloud-scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 1–14.

[12] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[13] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” arXiv preprint arXiv:1802.09477,
2018.

[14] A. Gaier and D. Ha, “Weight agnostic neural networks,” in Advances in
Neural Information Processing Systems, 2019, pp. 5364–5378.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, and D. Warde-
Farley, “Generative adversarial nets in advances in neural information
processing systems (nips),” 2014.

[16] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[17] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[19] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017, pp. 1–12.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[22] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2017, pp. 553–564.

[23] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2017, pp. 45–54.

[24] P. Mannan, A. Samajdar, and T. Krishna, “Clan: Continuous learning
using asynchronous neuroevolution on commodity edge devices,” arXiv
preprint arXiv:2008.11881, 2020.

[25] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da Silva, “neat-
python,” https://github.com/CodeReclaimers/neat-python.

[26] Y. Meng, S. Kuppannagari, and V. Prasanna, “Accelerating proximal
policy optimization on cpu-fpga heterogeneous platforms,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 19–27.

[27] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[29] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[32] A. Moore, “K-means and hierarchical clustering,” 2001.
[33] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,

B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 27–40, 2017.

[34] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training.”

[35] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[36] A. Samajdar, P. Mannan, K. Garg, and T. Krishna, “Genesys: Enabling
continuous learning through neural network evolution in hardware,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2018, pp. 855–866.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

10

http://nvdla.org
https://cloud.google.com/speech-to-text
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/CodeReclaimers/neat-python

[39] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator effi-
ciency through resource partitioning,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 535–547.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[41] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain: A deep
learning accelerator that tames the diversity of cnns through adaptive
data-level parallelization,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1–6.

[42] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning
through evolving neural network topologies,” in Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation, 2002,
pp. 569–577.

[43] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
arXiv preprint arXiv:1712.06567, 2017.

[44] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[45] L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, “A study of re-
inforcement learning for neural machine translation,” arXiv preprint
arXiv:1808.08866, 2018.

[46] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” in Advances in neural information processing systems,
2017, pp. 5279–5288.

[47] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, 2015, pp. 161–170.

[48] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 2018.

[49] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2016, pp. 1–12.

[50] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and
D. Chen, “Dnnbuilder: an automated tool for building high-performance
dnn hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[51] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra, “Adaptive key frame
extraction using unsupervised clustering,” in Proceedings 1998 Interna-
tional Conference on Image Processing. ICIP98 (Cat. No. 98CB36269),
vol. 1. IEEE, 1998, pp. 866–870.

[52] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

11

	Introduction
	Background and Motivation
	Deep Learning (DL) Techniques
	Continuous Learning Techniques
	NEAT

	Algorithmic Profiling for RL and NEAT
	Profiling of RLs
	Profiling of NEAT

	E3-INAX
	Challenge: Irregular and Sparse NNs.
	Eval-Evol-Engine (E3)
	Architecture
	Dataflow

	Irregular Network Accelerator (INAX)
	Architecture
	Dataflow

	Processing Unit (PU) in INAX
	Architecture
	Dataflow

	Processing Element (PE) in INAX
	Architecture
	Dataflow

	Parallelism Strategies in E3
	Parallelism Across PE
	Dynamic network topology
	PEs alignment
	Synchronization

	Parallelization Across PU
	Synchronization issue from variance of NNs
	Synchronization issue from variance of ``env"

	Evaluation
	Setup
	Runtime analysis in INAX
	Acceleration Benefit
	Energy Benefit
	FPGA utilization
	Effectiveness of INAX over GeneSys

	Related-works
	Conclusion
	References

