IISWC 2022

Nov 8, 2022

Demystifying Map Space Exploration for NPUs

Sheng-Chun Kao¹, Angshuman Parashar², Po-An Tsai², Tushar Krishna¹

Contact: tushar@ece.gatech.edu

https://github.com/maestro-project/gamma-timeloop

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

DNN Applications

"AI is the new electricity" - Andrew Ng

Object Detection

Image Segmentation

Medical Imaging

Speech Recognition

Text to Speech

Recommendations

Why do we need DNN accelerators (NPUs)?

• Millions of Parameters (i.e., weights)

• Billions of computations

DNN Topology	Number of Weights
AlexNet (2012)	3.98M
VGGnet-16 (2014)	28.25M
GoogleNet (2015)	6.77M
Resnet-50 (2016)	23M
DLRM (2019)	540M
Megatron (2019)	8.3B

• Heavy data movement

DRAM

Buffer

PE

Need lots of parallel compute

This makes CPUs

inefficient

Spatial (or Dataflow) NPUs

- Millions of Parameters (i.e., weights)
 - Billions of computations

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

Architectural Components of a DNN Accelerator

Architectural Components of a DNN Accelerator

Design Space of An Accelerator

Representation of a Mapping

Loop Nest

- memory-centric (Mei et al., IEEE Trans. Comp. 2021)

Example of Mapping run by NVDLA

Focus: Intra-layer / Intra-operator Mappings

Mapping - Orchestrating Data Movement

12

Why Mappings Matter?

480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 1%

6,582 mappings have min. DRAM accesses but vary 11x in energy efficiency

Map Space Exploration (MSE) is crucial!

Map Space Exploration (MSE)

Challenge(s) with MSE

Immense design space: ~O(10^24) per DNN layer on a 2-level memory hierarchy accelerator

- Not amenable to exhaustive search
 - Need ~ 10²⁵ years assuming 1 msec per sample
 - 3x longer than the age of Earth!
 - \rightarrow Sample efficiency is crucial

Sample efficiency: The performance improvement under limited number of samples.

- Discrete design space (X) and non-convex performance (i.e., reward) space (f(X))
 - Not directly amenable to gradient-descent

E.g., VGG-16 (K=64, C=64, X=224, Y=224, R=3, S=3) Tile Search Space = 64x64x224x224x3x3 = 10⁹ Parallelism Search Space = 6 Loop Order Search Space = 6! Total = 10¹² (per tiling level)

MSE is an active area of research

Work	Search Technique	
AutoTVM (OSDI'18)	Simulated Anneal	
Timeloop (ISPASS'19)	Pruned Search	Houristics
dMazeRunner (TECS'19)	Pruned Search	
Simba (MICRO'19)	Random Search	
FlexTensor (ASPLOS'20)	RL	
CoSA (ISCA'21)	Mixed-Integer Programming	Learning-
MindMapping (ASPLOS'21)	Gradient-based	based
HASCO (ISCA'21)	Bayesian Opt + RL	methods
Gamma (ICCAD'20)	Specialized GA	

MSE is solved? What's next?

Goal of this work

Demystifying MSE

Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Improving MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

Goal of this work

Demystifying MSE

Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Improving MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Categorizing Existing DNN Mappers

Target Mappers

3 : https://github.com/maestro-project/gamma-timeloop

Evaluation Setup

Accelerator Configuration

DNN Workloads

A workload is a DNN layer

following experiments

Other objectives can also be used

 Accel-A: A seen and trained accelerator configuration for the surrogate model in gradient base method

We use some selected workloads for the

We use Energy-Delay-Product (EDP) as objective

• Accel-B: A new unseen accelerator configuration

•

Objective

Accel AAccelerator ConfigurationAccel A512 KB shared buffer, 64 KB private buffer per PE, 256 PEs, 1 ALUs per PEAccel B64 KB shared buffer, 256 B private buffer per PE, 256 PEs, 4 ALUs per PE

(B,M,K,N)

(16, 1024, 1024, 512)

(16,512,1024,512)

(16,4096,1024,512)

CONV2D Workload	(B,K,C,Y,X,R,S)		
Resnet Conv_3	(16,128,128,28,28,3,3)		
Resnet Conv_4	(16,256,256,14,14,3,3)		
Inception Conv_2	(16,192,192,27,27,5,5)		

GEMM Workload

Bert-Large KQV

Bert-Large Attn

Bert-Large FF

CONV2D Notation			
В	Batch size		
Κ	Output channel		
С	Input channel		
Υ	Input Height		
Х	Input Width		
R	Weight Height		
S	Weight Width		

GEMM Notation				
Μ	Matrix-A Rows			
Ν	Matrix-B Rows			
K	Contraction sizes			

11/8/22

Comparisons of Mapper Algorithms

Accel-A: Accelerator configuration MindMappings is trained on

Sampling Efficiency

- Gradient-based > Feedback-based > Random-Pruned
 - Direct gradient access faster than collecting more data samples to learn

Optimality

- Feedback-based > Gradient-based > Random-Pruned
 - Gradient-based can get stuck in local minima

Wall-clock Search Time

- Random-based > Gradient-based > Feedback-based
 - Runtime cost per sample is about 10x higher for Learning methods than Random-based
 - When time constraint is strictly tight, Learning method cannot yet gather adequate data to improve their sampling function

Comparisons of Mapper Algorithms

Accel-A: Accelerator configuration MindMappings is trained on Accel-B: An unseen accelerator configurations

- Gradient-based method is tied to one or few seen accelerator configurations in the training dataset
- Gradient-based method can recover the performance by
 - Collecting new data (1M-5M data points for quality result)
 - Re-train the surrogate model

Deeper Look at Gamma

S-C. Kao and T. Krishna, "GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm", In Proc of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov 2020

Features

•

- Mapping represented as "genes"
- Custom operators
 - crossover and mutation to maintain valid mappings

3 additional

operators

IISWC'22

Sensitivity Analysis of Mapper's Operators

We use **Gamma** for this analysis

- Gamma has separate mutation operator for different mapping axes
- We use only single mutation operator for exploration

- Mutation-Tile is the most impactful
 - Providing tile size flexibility crucial for accelerator performance
- Many order + parallelism permutations lead to similar latency or energy.
 - Various loop orders can be placed into large "stationarity" buckets (such as weight/ input/ output/ row)

Sensitivity Analysis of Mapper's Operators

We use **Gamma** for this analysis

- GA is special for its crossover operator
- We perform sensitivity analysis on crossover operator

- standard-GA is not efficient due to lack of specialized mutation and crossover operators
- Blending two high-performance mappings (*crossover*) can effectively create another high-performance mapping (from MutateT+O+P to Crossover+MutateT+O+P)
- Crossover by itself is not as efficient without specialized mutations

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

Goal of this work

Demystifying MSE

Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Improving MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Warm-start: techniques for Improving MSE Speed

Observation:

- DNN workloads have similarity
- Solution for mapping axes on Order and Parallelism can often be re-used

Warm-start

Initialize mapping search by the previous mapping solutions

• Store found solutions in the replay buffer

Warm-start initialization steps

- Compare workload similarity in the replay buffer
- 2. Inherent Order, Parallelism axes
- 3. Scale tile axis to match the tensor shape of the new workload
- 4. Run the optimization loop as usual

The Effect of Warm-start

Later layers of DNN ightarrow can leverage previous solutions and start at better points

- Warm-start can help start at better points and converge faster
- Warm-start can reduce the time-to-converge by 3.3x-7.3x for searching entire model

Goal of this work

Demystifying MSE

Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Improving MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Does Sparsity Matter for MSE?

Motivation:

- DNN model weights are often trained to be sparse
- Does an optimal mapping for dense workload still perform well in sparse one?

Experiment Methodology:

- We find optimal mapping for workloads with different sparsity
- We evaluate the found optimal mapping one across different sparsity levels
- Green-text represents best of each row

Configuration: Accel-B

		EDP (cycles uJ)			
		Weight Density of the Workload			
	Density	1.0	0.5	0.1	0.01
sity	Density	Resnet Conv_3			
den	1.0	3.7E+10	3.9E+10	≤.8E+10	1.6E+12
ent	0.5 🔶	1.0E+10	4.9E+09	0 1E+09	3.9E+11
fere	0.1	8.0E+08	6.6E+07	0.4E+07	8.3E+08
dif	0.01	5.0E+07	3.1E+04	4.8E+04	1.6E+04
SSO.	Density	Resnet Conv_4			
acı	1.0	3.1E+10	3.6E+10	1.0E+11	4.3E+11
ing	0.5	8.3E+09	4.9E+09	1.4E+10	9.6E+10
app	0.1	5.5E+08	9.1E+07	2.3E+07	3.7E+08
d m	0.01	3.0E+07	7.0E+05	6.4E+03	5.4E+03
unc	Density	Inception Conv_2			
le fo	1.0	1.1E+13	1.3E+13	1.5E+13	5.9E+14
it th	0.5	3.4E+12	2.0E+12	2.3E+12	1.5E+14
Te	0.1	3.5E+11	1.3E+10	5.1E+09	4.0E+10
	0.01	3.3E+09	9.4E+06	3.3E+06	6.2E+05

- Green-text overlaps with blue-cell (optimized mapping for specific density level)
 - \rightarrow MSE needs to consider sparsity to pursue best performance
- Weight sparsity can be supported by simple extension of the current MSE framework, since weight sparsity is often fixed after model is trained.
 - But what about activation sparsity?

Sparsity-aware: Technique to Support Dynamic Sparsity

Motivation:

- Activation sparsity is dynamic
- Fresh searches for new mapping for each input-activation is not practical

Sparsity-aware

Learn a mapping that generalizes across different sparsity levels

Sparsity-aware Methods

At evaluation phase

- 1. We ignore the workload sparsity and impose different pre-defined sparsity to the workloads
 - E.g., 1.0, 0.5, 0.1 \rightarrow 3 different sparsity
- 2. Scores the mapping by the weighted sum of the performance of this workload across different assumed sparsity
- 3. The mappings will be ranked and selected by the scores

36

The Effect of Sparsity-aware for Activation Sparsity

Input-activation is sparse

Experiment Methodology:

- Sparsity-aware is trained (searched) under the assumption of 1.0, 0.8, 0.5, 0.2, 0.1, five sparsity levels
- Static-density only optimized for specific density
- We evaluate the found optimal mapping one across different sparsity 1.0 0.05
- Green-text represents best of each row
- [Static density] Green-text overlaps with blue-cell (optimized mapping for specific sparsity level)
 - Different sparsity levels do require different mapping
- [Static-density] Mapping found for specific sparsity level perform poorly for other sparsity levels
- [Sparsity-aware] The found general mapping can
 - Perform comparably to optimal mappings optimized for different sparsity levels
 - Perform relatively well across a range of sparsity (1.0 0.05)

	EDP (Energy uJ)					
Workload	Sparsity-	Static density	Static density	Static density		
Density	aware	1.0	0.5	0.1		
	Resnet Conv_3, Accel-B					
1.0	2.40E+13	2.39E+13	2.41E+13	2.46E+13		
0.9 📏	1.75E+13	1.94E+13	1.76E+13	1.79E+13		
0.8	1.23E+13	1.54E+13	/ 1.24E+13	1.26E+13		
0.7	8.26E+12	1.18E+13	8.30E+12	8.46E+12		
0.6	5.21E+12	8.69E+12	5.24E+12	5.34E+12		
0.5	3.02E+12	6.06E+12	3.02E+12	3.10E+12		
0.4	1.55E+12	3.90E+12	1.56E+12 📢	21.59E+12		
0.3	6.59E+11	2.21E+12	6.63E+11	6.77E+11		
0.2	1.98E+11	1.00E+12	1.99E+11	2.04E+11		
0.1	4.78E+10	2.65E+11	4.81E+10	4.78E+10		
0.05	1.28E+10	7.34E+10	1.29E+10	2.67E+10		
	Incep	tion Conv_2, A	ccel-B			
1.0	7.77E+15	7.77E+15	7.93E+15	7.83E+15		
0.9	5.67E+15	6.33E+15	5.79E+15	5.71E+15		
0.8	3.99E+15	5.00E+15	4.08E+15	4.02E+15		
0.7	2.67E+15	3.84E+15	2.74E+15	2.69E+15		
0.6	1.69E+15	2.82E+15	1.73E+15	1.70E+15		
0.5	9.78E+14	1.97E+15	9.78E+14	9.83E+14		
0.4	5.02E+14	1.26E+15	5.21E+14	5.05E+14		
0.3	2.13E+14	7.16E+14	2.23E+14	2.14E+14		
0.2	6.39E+13	3.22E+14	8.64E+13	6.38E+13		
0.1	1.55E+13	8.37E+13	4.49E+13	1.53E+13		
0.05	4.12E+12	2.25E+13	2.53E+13	3.98E+12		

Outline

- Background on NPUs
- Map-Space and Map-Space Exploration
- Quantitative Comparison of Mappers
- Improving Map-Space Exploration
- Lessons Learnt

Conclusion

Motivation and Problem Statement

Thank you!

- MSE is a key component of DNN accelerator design/deployment
- It is computationally challenging and has spawned research in heuristics and learning-based methods, each claiming to be better than the other
- We characterize three classes of DNN accelerator mappers: Timeloop's native Random-Pruned, MindMappings (gradient-based) and Gamma (feedback-based)

Key Findings

- Learning-based mappers have higher sampling efficiency than random-pruned by constantly improving their sampling function. However, they have the higher wall-clock time to acquire one sample.
- Tile is the most critical mapping axis to explore.
- Creating new mappings from high-performance mappings (i.e., crossover) improves sample-efficiency
- MSE needs to consider sparsity

Proposed Optimizations

- Warm-Start: Leveraging DNN workload similarity can bootstrap Mapper from better points
- **Sparsity-aware:** To tackle dynamic sparsity in activation, it is possible to find a generic mapping works generally well across a range of sparsity level