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DNN Applications
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Object Detection

Speech Recognition

Image Segmentation Medical Imaging

Text to Speech Recommendations

3

“AI is the new electricity” – Andrew Ng



Why do we need DNN accelerators (NPUs)?
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• Millions of Parameters (i.e., weights)
• Billions of computations

• Heavy data movement

DNN Topology Number of Weights
AlexNet (2012) 3.98M

VGGnet-16 (2014) 28.25M

GoogleNet (2015) 6.77M

Resnet-50 (2016) 23M

DLRM (2019) 540M

Megatron (2019) 8.3B

Need lots of parallel compute

Need to reduce energy

This makes CPUs 

inefficient

This makes GPUs 

inefficient
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Spatial (or Dataflow) NPUs
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• Millions of Parameters (i.e., weights)
• Billions of computations

• Heavy data movement

Spread computations 

across hundreds of ALUs

Reuse data within the array 

via local storage and  direct 

communication

Examples: Google TPU, MIT Eyeriss, …

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU M
em

ory H
ierarchy

Control

Register/FIFO/SRAM
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Architectural Components of a DNN Accelerator
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(global/ local)

3 4
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Time

1 2 3 4

1 2 1 2

t=1 t=2

Tile Scheduling Spatial Partitioning

Mapping on entire
accelerator at time = 1

Dataflow

PE0 PE1 PE2 PE3

1 2 3 4
3 3 3 3
1 1 1 1

…
7 8
5 6

3 4
1 2

… …K

3
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S
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X
Y
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X’

Y’
N

…

Filter Tiles Input Tiles Output Tiles

151331
… 161442

…

Number: Tile IDs
Data / Computation Tile Sizing

Number: Tile IDs

Ordering Parallelism 
DimensionTiling 

Mapping

(Resnet50)
Workload

CONV2D

Map-space



Design Space of An Accelerator
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HW Resources MappingModel

Accelerator

Num of PEs

Buffer Sizes

Tiling

Ordering

ParallelismNoCs

Accel.

Latency

Energy

Power

Area
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HW Design-Space Map-space

Size of map space 
depends on flexibility 
of accelerator in 
supporting different 
ordering, parallelism 
and tile sizes



Representation of a Mapping
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DRAM Mapping

L2 Mapping

L1 Mapping

…. 
for x= [0, 128, xt):

for bt=[0, 1, 1)
for kt=[0, 16, 1):

for ct=[0, 64, 1):
for rt=[0, 3, 1):

for st=[0, 3, 1):
for yt=[0, 4, 1):

for xt= [0, 4, 1):
par_for kp=[0, 16, 1):
par_for cp=[0, 64, 1):

…

for rtt= [0, 1, 1):
…

L2 Tile
L2 Order
L2 Par.

L1 Tile
L1 Order
L1 Par.

DRAM Tile
DRAM Order
DRAM Par.

Global Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

Alternate representations also exist:
- data-centric (Kwon et al MICRO 2019) 
- memory-centric (Mei et al., IEEE Trans. Comp. 2021)

Loop Nest



PE …

…
…

…

PE

PE

PE PE

… MAC
⊗⊕

Local Scartchpad

Global 
Buffer

Example of Mapping run by NVDLA
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16

64

K

C…
for kt=[0, 16, 1):

for ct=[0, 64, 1):
for rt=[0, 3, 1):

for st=[0, 3, 1):
for yt=[0, 4, 1):

for xt= [0, 4, 1):
par_for kp=[0, 16, 1):

par_for cp= [0, 64, 1):
…

Map

Loop 
Order

Tile Sizes

Loop 
Parallelization

Focus: Intra-layer / Intra-operator Mappings

L3 Mapping

L2 Mapping

L1 Mapping

(Resnet50)
Workload

CONV2D



Mapping - Orchestrating Data Movement
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Global Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

for x1= [0, 3, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

L2 Mapping

L1 Mapping

for x2= [0, 81, 3):

for s2= [0, 9, 9):

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

x = x2+x1+x0 
s = s2+s1+s0 

for x1= [0, 27, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

L2 Mapping

L1 Mapping

Global Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

for x2= [0, 81, 27):

for s2= [0, 9, 9):

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

x = x2+x1+x0 
s = s2+s1+s0 

27
81

x

3

81

x



Why Mappings Matter?
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480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 

1%

6,582 mappings have min. DRAM 

accesses but vary 11x in energy 

efficiency

VGG conv3 2 Layer. Source: Timeloop

13

11/8/22

Map Space Exploration (MSE) is crucial!



Objective 
(EDP, latency)

Workload
(Resnet)

Accelerator 
Config.

(PEs, Buffers,…)

Optimized Mapping

Map-Space Exploration 
(Mapper/ Search Algorithm)

Evaluation (Cost model)

Map Space Exploration (MSE)
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Accelerator 
(NPU)

Map-Space Representation



Cost Model
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DL Operator

HW Params

Mapping

Micro-

architecture 

Cost Model

Latency, 

Throughput, 

Energy, …

models accelerators with arbitrary 
dataflows and HW implementations

Timeloop (Parashar et al, ISPASS 2019)

MAESTRO (Kwon et al, MICRO 2020)

SCALE-sim (Samajdar et al, ISPASS 2020)

Interstellar (Yaang et al, ASPLOS 2020)

ZigZag (Mei et al., IEEE Trans. Computers 2021)

…

Popular Analytical Cost Models
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DRAM Mapping

L2 Mapping

L1 Mapping

…. 
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Challenge(s) with MSE
Immense design space: ~O(!"^24) per DNN layer 
on a 2-level memory hierarchy accelerator
• Not amenable to exhaustive search

• Need ~ 1025 years assuming 1 msec per 

sample

• 3x longer than the age of Earth!

à Sample efficiency is crucial 

• Discrete design space (X) and non-convex 
performance (i.e., reward) space (f(X))
• Not directly amenable to gradient-descent

IISWC'22                                                  Tushar Krishna | School of ECE | Georgia Institute of Technology

Mindmapping [ASPLOS’21]

Sample efficiency: The performance improvement under limited number of samples.

16

E.g., VGG-16 (K=64, C=64, X=224, Y=224, R=3, S=3)
Tile Search Space = 64x64x224x224x3x3 = 109

Parallelism Search Space = 6
Loop Order Search Space = 6!
Total = 1012 (per tiling level)

11/8/22



MSE is an active area of research
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Work Search Technique

AutoTVM (OSDI’18) Simulated Anneal

Timeloop (ISPASS’19) Pruned Search

dMazeRunner (TECS’19) Pruned Search

Simba (MICRO’19) Random Search

FlexTensor (ASPLOS’20) RL

CoSA (ISCA’21)
Mixed-Integer 

Programming

MindMapping (ASPLOS’21) Gradient-based

HASCO (ISCA’21) Bayesian Opt + RL

Gamma (ICCAD’20) Specialized GA 

Learning-

based 

methods

Heuristics

MSE is solved? What’s next?
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Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Demystifying MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Improving MSE

Goal of this work
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Objective 
(EDP, latency)

Workload
(Resnet)

Accelerator 
Config.

(PEs, Buffers,…)

Map-Space Representation

Optimized solution

Map-Space Exploration 
(Mapper/ Search Algorithm)

Evaluation (Cost model)

Categorizing Existing DNN Mappers
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Random 
based

Gradient 
based

Feedback 
based

(black-box,
RL)

Surrogate 
model is tied 
to one or few 
accelerator 
configurations

Fast: Update by 
gradient & avoid 
interaction with 
cost-model

The fastest: light 
exploration 
algorithm
Poor sampling 
efficiency

High sampling 
efficiency

Slow: heavy exploration 
algorithm & frequently 
interacting with cost-
model

e.g., 
Random-Pruned

e.g., Gamma

e.g., 
Mind Mappings

Other 
methods

ü

✘

ü

✘

ü

✘

Exploration Methods
(Mappers)

e.g., CoSA
(Polyhedral, MIP, MCMC,..)



Objective 
(EDP, latency)

Workload
(Resnet)

Accelerator 
Config.

(PEs, Buffers,…)

Optimized solution

Map-Space Exploration 
(Mapper/ Search Algorithm)

Evaluation (Cost model)

Target Mappers
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Timeloop4

Random-pruned1 (Timeloop’s native mapper)
MindMappings2 (Trained surrogate model)
Gamma3 (Genetic Algorithm with custom operators)

https://github.com/nvlabs/timeloop1, 4
2 https://github.com/kartik-hegde/mindMappings
3 : https://github.com/maestro-project/gamma-timeloop

We select the SOTA of each category and 
compare their behaviors

Map-Space Representation

https://github.com/nvlabs/timeloop
https://github.com/kartik-hegde/mindMappings
https://github.com/maestro-project/gamma-timeloop


Evaluation Setup
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GEMM Workload (B,M,K,N)

Bert-Large KQV (16,1024,1024,512)

Bert-Large Attn (16,512,1024,512)

Bert-Large FF (16,4096,1024,512)

Accelerator Configuration

Accel A 512 KB shared buffer, 64 KB private buffer per PE, 256 PEs, 1 ALUs per PE

Accel B 64 KB shared buffer, 256 B private buffer per PE, 256 PEs, 4 ALUs per PE

CONV2D Notation

B Batch size

K Output channel

C Input channel

Y Input Height

X Input Width

R Weight Height

S Weight Width

GEMM Notation

M Matrix-A Rows

N Matrix-B  Rows

K Contraction sizes

Accelerator Configuration
• Accel-A: A seen and trained accelerator 

configuration for the surrogate model in 

gradient base method

• Accel-B: A new unseen accelerator 

configuration

DNN Workloads
A workload is a DNN layer

• We use some selected workloads for the 

following experiments

Objective
• We use Energy-Delay-Product (EDP) as objective

• Other objectives can also be used

CONV2D Workload (B,K,C,Y,X,R,S)

Resnet Conv_3 (16,128,128,28,28,3,3)

Resnet Conv_4 (16,256,256,14,14,3,3)

Inception Conv_2 (16,192,192,27,27,5,5)



Comparisons of Mapper Algorithms
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Resnet Conv_4, Accel-A Inception Conv_2 , Accel-AEDP

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K
Num of Samples Num of Samples

EDP Resnet Conv_4, Accel-A Inception Conv_2 , Accel-A

Random-Pruned (random-based)
Mind Mappings (gradient-based)Gamma (feedback-based)

Accel-A: Accelerator configuration 
MindMappings is trained on 

Sampling Efficiency
• Gradient-based >  Feedback-based > Random-Pruned

• Direct gradient access faster than collecting more data samples 
to learn

Optimality
• Feedback-based > Gradient-based > Random-Pruned

• Gradient-based can get stuck in local minima

Wall-clock Search Time
• Random-based > Gradient-based > Feedback-based

• Runtime cost per sample is about 10x higher for Learning 
methods than Random-based

• When time constraint is strictly tight, Learning method cannot 
yet gather adequate data to improve their sampling function



Comparisons of Mapper Algorithms
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Resnet Conv_4, Accel-B Inception Conv_2 , Accel-B

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K
Num of Samples Num of Samples

Random-Pruned (random-based)
Mind Mappings (gradient-based)Gamma (feedback-based)

Resnet Conv_4, Accel-A Inception Conv_2 , Accel-AEDP

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K
Num of Samples Num of Samples

Recap of performance on Accel-A

• Gradient-based method is tied to one or few 

seen accelerator configurations in the training 

dataset

• Gradient-based method can recover the 

performance by

• Collecting new data (1M-5M data points 

for quality result)

• Re-train the surrogate model

EDP

Accel-A: Accelerator configuration 
MindMappings is trained on 
Accel-B : An unseen accelerator 
configurations



Deeper Look at Gamma

Evolution

Evaluation

Init. Crossover Mutation

Fitness 
Function

Select

Reorder Growing Aging

Cost model Decoder

GAMMA

Features
• Mapping represented as 

“genes”
• Custom operators

• crossover and 
mutation to 
maintain valid 
mappings

• 3 additional 
operators

Output Mapping Strategy

DNN model Objective Platform 
resources

Input Mapping 
Constraint
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P C R S X K Y P X Y S R K C

K 20 3 3 15 64 10 C 7 5 1 1 8 1

S-C. Kao and T. Krishna, “GAMMA: Automating the 
HW Mapping of DNN Models on Accelerators via 
Genetic Algorithm”, In Proc of the IEEE/ACM 
International Conference on Computer-Aided 
Design (ICCAD), Nov 2020



Sensitivity Analysis of Mapper’s Operators
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We use Gamma for this analysis

• Gamma has separate mutation operator for different mapping axes

• We use only single mutation operator for exploration

Resnet Conv_3, Accel-A Resnet Conv_4, Accel-A Inception Conv_2 , Accel-AEDP EDP
EDP

Num. of Generations Num. of Generations Num. of Generations
0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

Mutate-Tile Mutate-Order Mutate-Parallelism

• Mutation-Tile is the most impactful
• Providing tile size flexibility crucial for accelerator performance

• Many order + parallelism permutations lead to similar latency or energy.
• Various loop orders can be placed into large "stationarity" buckets (such as weight/ input/ output/ row)



Sensitivity Analysis of Mapper’s Operators
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We use Gamma for this analysis
• GA is special for its crossover operator

• We perform sensitivity analysis on crossover operator

EDPEDP

Num. of Generations Num. of Generations Num. of Generations

EDP

CrossoverCrossover+Tile+Order+ParallelismStandard-GA Tile+Order+Parallelism

Resnet Conv_3, Accel-A Resnet Conv_4, Accel-A Inception Conv_2 , Accel-A

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

• standard-GA  is not efficient due to lack of specialized mutation and crossover operators

• Blending two high-performance mappings (crossover) can effectively create another high-performance 

mapping (from MutateT+O+P to Crossover+MutateT+O+P)

• Crossover by itself is not as efficient without specialized mutations
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Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Demystifying MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Improving MSE

Goal of this work



Representation
Exploration 

Evaluation

Replay 
Buffer

Input Workload

Similarity 
Function

Map1

Mapping 
Initializer

ID_3

Scaled 
Map1

Warm-start: techniques for Improving MSE Speed
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ID
Workload

(B,K,C,Y,X,R,S)

Opt. 

Map

1 16,64,32,56,56,3,3 Map1

2 16,256,128,28,28,3,3 Map2

16,64,128,56,56,3,3

ID Editing Distance

1 1

2 3

Observation:
• DNN workloads have similarity

• Solution for mapping axes on Order and Parallelism can often be re-used  

Warm-start
Initialize mapping search by the previous mapping solutions

• Store found solutions in the replay buffer 

Warm-start initialization steps

1. Compare workload similarity in the replay 

buffer

2. Inherent Order, Parallelism axes

3. Scale tile axis to match the tensor shape of 

the new workload

4. Run the optimization loop as usual



The Effect of Warm-start

11/8/22IISWC'22                                                  Tushar Krishna | School of ECE | Georgia Institute of Technology

32

1e101e10VGG Conv_1 VGG Conv_13 Resnet Conv_1 Resnet Conv_8

Num. of Generations Num. of Generations Num. of Generations Num. of Generations

EDP

Search with random initialization Search with warm-start initialization
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A: Default MSE (search w/ random init)   
B: Warm-start MSE (serch w/ warm-start init)

A B A B

A B A B A B

3.3x
faster

4.0x 
faster

4.6x
faster
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A B
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MobilenetV2

7.3x
faster

Configuration: Accel-B

• Warm-start can help start at better points and 

converge faster

• Warm-start can reduce the time-to-converge by 

3.3x-7.3x for searching entire model

First layer of DNN à No difference

Later layers of DNN à can leverage previous solutions and start at better points
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Challenge 1: Dozens of mappers are proposed. It is hard to compare them systematically

Challenge 2: It is hard to explain and understand why and how the mapper works

Demystifying MSE

Challenge 1: The run time of MSE become bottlenecks for large DNN models with complex tensor shape

Challenge 2: DNN workloads has sparsity, how MSE cope with sparsity is still an open question

Improving MSE

Goal of this work
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Density 1.0 0.5 0.1 0.01

Density
1.0 3.7E+10 3.9E+10 5.8E+10 1.6E+12
0.5 1.0E+10 4.9E+09 9.1E+09 3.9E+11
0.1 8.0E+08 6.6E+07 6.4E+07 8.3E+08
0.01 5.0E+07 3.1E+04 4.8E+04 1.6E+04

Density
1.0 3.1E+10 3.6E+10 1.0E+11 4.3E+11
0.5 8.3E+09 4.9E+09 1.4E+10 9.6E+10
0.1 5.5E+08 9.1E+07 2.3E+07 3.7E+08
0.01 3.0E+07 7.0E+05 6.4E+03 5.4E+03

Density
1.0 1.1E+13 1.3E+13 1.5E+13 5.9E+14
0.5 3.4E+12 2.0E+12 2.3E+12 1.5E+14
0.1 3.5E+11 1.3E+10 5.1E+09 4.0E+10
0.01 3.3E+09 9.4E+06 3.3E+06 6.2E+05

Weight Density of the Workload
EDP (cycles uJ)

Te
st 

th
e f

ou
nd

 m
ap

pi
ng

 ac
ro

ss
 d

iff
er

en
t d

en
sit

y Resnet Conv_3

Resnet Conv_4

Inception Conv_2

Configuration: 
Accel-B

Motivation:
• DNN model weights are often trained to be sparse

• Does an optimal mapping for dense workload still 

perform well in sparse one?

Experiment Methodology:
• We find optimal mapping for workloads with 

different sparsity

• We evaluate the found optimal mapping one across 

different sparsity levels

• Green-text represents best of each row

• Green-text overlaps with blue-cell (optimized mapping 

for specific density level)

• à MSE needs to consider sparsity to pursue best performance

• Weight sparsity can be supported by simple extension 

of the current MSE framework, since weight sparsity is 

often fixed after model is trained.

• But what about activation sparsity?
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Representation
Exploration 

Evaluation

C
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Map1
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 Im
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er
 

(W
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d
 S
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) Map1 1.0

Map1 0.5

Map1 0.1

…

Imposed 
workload 
sparsity

Map1
2.5E+7

Score

2.5E+7

2E+8

8E+7

2E+7

…

EDP
(cycles uJ)

Motivation:
• Activation sparsity is dynamic 

• Fresh searches for new mapping for each input-activation is not practical

Sparsity-aware
• Learn a mapping that generalizes across different sparsity 

levels 

Sparsity-aware Methods
At evaluation phase

1. We ignore the workload sparsity and impose 

different pre-defined sparsity to the workloads

• E.g., 1.0, 0.5, 0.1 à 3 different sparsity

2. Scores the mapping by the weighted sum of the 

performance of this workload across different 

assumed sparsity

3. The mappings will be ranked and selected by 

the scores
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Workload
Density

Sparsity-
aware

Static density
1.0

Static density
0.5

Static density
0.1

1.0 2.40E+13 2.39E+13 2.41E+13 2.46E+13
0.9 1.75E+13 1.94E+13 1.76E+13 1.79E+13
0.8 1.23E+13 1.54E+13 1.24E+13 1.26E+13
0.7 8.26E+12 1.18E+13 8.30E+12 8.46E+12
0.6 5.21E+12 8.69E+12 5.24E+12 5.34E+12
0.5 3.02E+12 6.06E+12 3.02E+12 3.10E+12
0.4 1.55E+12 3.90E+12 1.56E+12 1.59E+12
0.3 6.59E+11 2.21E+12 6.63E+11 6.77E+11
0.2 1.98E+11 1.00E+12 1.99E+11 2.04E+11
0.1 4.78E+10 2.65E+11 4.81E+10 4.78E+10
0.05 1.28E+10 7.34E+10 1.29E+10 2.67E+10

1.0 7.77E+15 7.77E+15 7.93E+15 7.83E+15
0.9 5.67E+15 6.33E+15 5.79E+15 5.71E+15
0.8 3.99E+15 5.00E+15 4.08E+15 4.02E+15
0.7 2.67E+15 3.84E+15 2.74E+15 2.69E+15
0.6 1.69E+15 2.82E+15 1.73E+15 1.70E+15
0.5 9.78E+14 1.97E+15 9.78E+14 9.83E+14
0.4 5.02E+14 1.26E+15 5.21E+14 5.05E+14
0.3 2.13E+14 7.16E+14 2.23E+14 2.14E+14
0.2 6.39E+13 3.22E+14 8.64E+13 6.38E+13
0.1 1.55E+13 8.37E+13 4.49E+13 1.53E+13
0.05 4.12E+12 2.25E+13 2.53E+13 3.98E+12

Resnet Conv_3, Accel-B

Inception Conv_2, Accel-B

EDP (Energy uJ)Experiment Methodology:
• Sparsity-aware is trained (searched) under the 

assumption of 1.0, 0.8, 0.5, 0.2, 0.1, five sparsity levels

• Static-density only optimized for specific density

• We evaluate the found optimal mapping one across 

different sparsity 1.0 – 0.05

• Green-text represents best of each row

• [Static density] Green-text overlaps with blue-cell (optimized 

mapping for specific sparsity level)
• Different sparsity levels do require different mapping

• [Static-density] Mapping found for specific sparsity level 

perform poorly for other sparsity levels

• [Sparsity-aware] The found general mapping can 

• Perform comparably to optimal mappings optimized for 

different sparsity levels

• Perform relatively well across a range of sparsity (1.0 – 0.05)

Input-activation is sparse
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• Background on NPUs
• Map-Space and Map-Space Exploration
• Quantitative Comparison of Mappers 
• Improving Map-Space Exploration
• Lessons Learnt



Conclusion
• Motivation and Problem Statement

• MSE is a key component of DNN accelerator design/deployment

• It is computationally challenging and has spawned research in heuristics and learning-based 

methods, each claiming to be better than the other

• We characterize three classes of DNN accelerator mappers: Timeloop’s native Random-Pruned, 

MindMappings (gradient-based) and Gamma (feedback-based)

• Key Findings
• Learning-based mappers have higher sampling efficiency than random-pruned by constantly improving their 

sampling function. However, they have the higher wall-clock time to acquire one sample. 

• Tile is the most critical mapping axis to explore. 

• Creating new mappings from high-performance mappings (i.e., crossover) improves sample-efficiency

• MSE needs to consider sparsity

• Proposed Optimizations
• Warm-Start: Leveraging DNN workload similarity can bootstrap Mapper from better points

• Sparsity-aware: To tackle dynamic sparsity in activation, it is possible to find a generic mapping works generally 
well across a range of sparsity level
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Code available: https://github.com/maestro-project/gamma-timeloop

Thank you!

https://github.com/maestro-project/gamma-timeloop

