
MAERI: Enabling Flexible Dataflow Mapping over

DNN Accelerators via Reconfigurable Interconnects

Hyoukjun Kwon
Georgia Institute of Technology

Atlanta, Georgia
hyoukjun@gatech.edu

Ananda Samajdar
Georgia Institute of Technology

Atlanta, Georgia
anandsamajdar@gatech.edu

Tushar Krishna
Georgia Institute of Technology

Atlanta, Georgia
tushar@ece.gatech.edu

Abstract

Deep neural networks (DNN) have demonstrated highly
promising results across computer vision and speech recog-
nition, and are becoming foundational for ubiquitous AI. The
computational complexity of these algorithms and a need for
high energy-efficiency has led to a surge in research on hard-
ware accelerators. To reduce the latency and energy costs
of accessing DRAM, most DNN accelerators are spatial in
nature, with hundreds of processing elements (PE) operating
in parallel and communicating with each other directly.
DNNs are evolving at a rapid rate, and it is common to

have convolution, recurrent, pooling, and fully-connected
layers with varying input and filter sizes in the most recent
topologies. They may be dense or sparse. They can also be
partitioned in myriad ways (within and across layers) to
exploit data reuse (weights and intermediate outputs). All of
the above can lead to different dataflow patterns within the
accelerator substrate.

Unfortunately, most DNN accelerators support only fixed
dataflow patterns internally as they perform a careful co-
design of the PEs and the network-on-chip (NoC). In fact,
the majority of them are only optimized for traffic within
a convolutional layer. This makes it challenging to map ar-
bitrary dataflows on the fabric efficiently, and can lead to
underutilization of the available compute resources.
DNN accelerators need to be programmable to enable

mass deployment. For them to be programmable, they need
to be configurable internally to support the various dataflow
patterns that could be mapped over them. To address this
need, we present Maeri, which is a DNN accelerator built
with a set of modular and configurable building blocks that
can easily support myriad DNN partitions and mappings
by appropriately configuring tiny switches. Maeri provides

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173176

DNN Year Num

CNV

Num

RNN

Num

POOL

Num

FC

Filter

Sizes

Input

Sizes

Alexnet [9] 2013 6 0 1 1 11x11,
5x5,
3x3

224x224

Googlenet [10] 2014 59 0 16 5 1x1,
3x3,
5x5

224x224

Resnet-50 [11] 2014 49 0 2 0 1x1,
3x3

224x224

VGGnet-16 [12] 2015 13 0 5 3 1x1,
3x3

224x224

DeepSpeech2 [2] 2016 2 7
(GRU)

0 1 41x11,
21x11

13x41x11

Deep voice [13] 2017 0 40 0 3 - 28x29

Table 1. Parameters of recent DNNs.
8-459% better utilization across multiple dataflow mappings
over baselines with rigid NoC fabrics.

ACM Reference Format:

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018.
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelera-
tors via Reconfigurable Interconnects. In ASPLOS ’18: ASPLOS ’18:
Architectural Support for Programming Languages and Operating
Systems, March 24–28, 2018, Williamsburg, VA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3173162.3173176

1 Introduction

The recent resurgence of the AI revolution has transpired
because of synergistic advancements across big data sets,
algorithms, and hardware. As a result, deep neural networks
(DNNs) are being deployed at an increasing scale - across
the cloud and IoT platforms - to solve complex regression
and classification problems in image [1] and speech recogni-
tion [2] with accuracies surpassing those of humans.
The microarchitecture of DNN inference engines is cur-

rently an area of active research in the computer architecture
community. GPUs are extremely efficient for training due to
the mass parallelism they offer, multi-core CPUs continue
to provide platforms for algorithmic exploration, and FP-
GAs provide power-efficient and configurable platforms for
algorithmic exploration and acceleration; but for mass de-
ployment across various domains (smartphones, cars, etc),
specialized DNN accelerators are needed to maximize per-
formance/watt. This observation has led to a flurry of ASIC
proposals for DNN accelerators over the recent years [3–8].
This work is motivated by a key practical and open chal-

lenge for DNN accelerator ASIC design going forward: pro-
grammability. DNNs have been evolving at a massive rate.
Table 1 lists some of the popular ones in use today. Within

https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176

…

Layer 1

…

Layer 2

…

Layer N

…

Computation
Flow

Inter-layer Dataflow

0
0…

Layer 1

0…

Layer 2

…

Layer N

…

Sparse Dataflow

O
pt

im
iz

ed
 D

at
flo

w
s

w
ith

 Ir
re

gu
la

r P
E

m
ap

pi
ng

…

Layer 1

…

Layer 2

…

Layer N

…

Dense Dataflow

++++++++

++++

++

+

x x x x x x x x x x x x x x x x

Prefetch
Buffer

Activation Units
Accelerator Controller

From/To DRAM

Layer Topology

D
is

tr
ib

ut
io

n/
R

ed
uc

tio
n

N
et

w
or

k
C

on
tr

ol
Weights / Input Activations

Activation Control

+ Adder Switch
Multiplier Switch

Local Buffer

MAERI Blocks

Local Forwarding
Data link

1:2 Switch

x

Map

Augmented
Reduction
Tree (ART)

Distribution Tree

MAERI

Figure 1. An overview of Maeri. Maeri is designed to efficiently handle CONV, LSTM, POOL and FC layers. It can also handle cross-layer
and sparse mappings. We implement this flexibility using a novel configurable interconnection network topology within the accelerator.

this short list itself, we can observe heavy variability in
terms of layer types (convolution, recurrent, pooling, and
fully-connected) and input/filter sizes. Some DNNs such as
GoogLeNet [10] have additional “reduction" layers to reduce
image dimensions. An efficient accelerator is one that can
be programmed to run all these DNNs efficiently.

We can consider programming an accelerator as a dataflow
graph (DFG) partitioning and mapping problem to target
accelerator substrates (analogous to the role of a compiler
in programmable CPUs). The classic way of partitioning
DFGs is layer by layer, and then slicing the layer into blocks
that can be mapped over the underlying hardware substrate.
This is the approach most of the early DNN accelerators
took [6, 14, 15]. However, recently new partitioning ap-
proaches that explore additional data reuse opportunities by
changing the partition have emerged - across layers [16], ker-
nels [17] and hybrid (kernel, channel, output) [18]. Among
these, for e.g., Fused CNN [16] retains intermediate out-
puts of a layer and calculate the next layer output using
the retained outputs, not iterating over within a layer. This
reduces data transfer between memory and processing ele-
ments (PEs), thereby increasing power efficiency. In addition
to partitioning, the DFG can also be transformed by remov-
ing some of the edges whose weights are zero or close to
zero. This is the idea of sparsity [7, 8, 19, 20] and has been
popular recently to reduce power consumption inside DNN
accelerators. Each of these promising approaches lead to a
unique dataflow between neurons in the DFG, which in turn
translates to irregular data movement patterns on-chip be-
tween the processing and memory elements. Unfortunately,
most ASIC DNN accelerators proposed to date are fairly rigid
in terms of their internal implementations, as the PEs and
network-on-chip (NoC) are tightly coupled, as we discuss
in Section 2, making it infeasible for them to support all
these dataflows within the same substrate. As a result, each
new optimization has resulted in a new accelerator proposal
optimized for the given optimization goal [7, 8, 16, 20]. This

makes the hardening of DNN accelerators into an IP or a
discrete chip impractical.

How do we design a single accelerator substrate that can
handle the growing number of dataflows resulting from mul-
tiple kinds of layers, dense and sparse connections, and vari-
ous partitioning approaches? Our proposed design philos-
ophy is to make the interconnects within the accelerator
reconfigurable. The DNN DFG is fundamentally a multi-
dimensional multiply-accumulate calculation. Each dataflow
is essentially some kind of transformation of this multi-
dimensional loop [21, 22]. We propose to design DNN accel-
erators as a collection of multiply and adder engines, each
augmented with tiny configurable switches that can be con-
figured to support different kinds of dataflows. Our design
is called Maeri (Multiply-Accumulate Engine with Recon-
figurable Interconnect) 1. Maeri can be viewed as a design
methodology rather than a fixed design by itself, that makes
a case for building accelerators using a suite of plug-and-play
building blocks rather than as a monolithic tightly-coupled
entity. These building blocks can be tuned at runtime using
our novel tree-based configurable interconnection fabrics to
enable efficient mapping of myriad dataflows.

We demonstrate Maeri with multiple case studies, demon-
strating how it handles convolutions, recurrent layers, irreg-
ular filter sizes, and sparsity, providing 8-459% better utiliza-
tion compared to a tightly-coupled rigid accelerator while
adding 6.5% power overhead and reducing 36.8% area over-
head over a state-of-the-art baseline like Eyeriss [6], and
adding 47.0% area and increase throughput by 49.0% over a
systolic array [23].

The rest of the paper is organized as follows. Section 2 pro-
vides background on DNNs and internal dataflows. Section 3
presents the Maeri design. Section 4 demonstrates various

1Maeri is a Korean word that means echo. We selected this name because a
DNN accelerator’s dataflow involves sending input data toward computation
units and receiving a weighted-accumulation (echo) back.

dataflow mappings over Maeri. Section 5 presents imple-
mentation results. Section 6 evaluates Maeri with myriad
case studies. Section 7 presents related work, and Section 8
concludes.

2 Background and Motivation

2.1 Deep Neural Networks

Neural networks are a rich class of algorithms that can be
trained to model the behavior of complex mathematical func-
tions. Neural networks models human brain with a large
collection of “neurons" connected with “synapses". Each neu-
ron is connected with many other neurons and its output
enhances or inhibits the actions of the connected neurons.
The connection is based on weights associated with synapses.
Deep neural networks (DNNs) have multiple internal (called
hidden) neuron layers before the final output layer that per-
forms the classification.
At present, there are three popular flavors of DNNs [23]:

Convolution Neural Networks (CNN), Recurrent Neural Net-
works (RNN), and Multi-Layer Perceptrons (MLP). CNNs are
feed-forward DNNs that have demonstrated a remarkable
degree of accuracy in recognition and classification of im-
ages, exceeding human capabilities [11, 24]. Each convolu-
tion layer receives input in form of a raw image or input
activations (the output of a previous convolution layer) and
produces output activations by sliding a set of filters over
input images [25]. Convolutions account for almost 90% of
the computations in a CNN [26]. RNNs add feed-back con-
nections inside the neural network to reflect past context
during the feed-forward computation and are used for tasks
involving signals with temporal correlation, such as speech
recognition, transliteration and so on. Themost popular RNN
is long short-term memory (LSTM) [27], where the output
at a certain time depends on the current input value, three
gate values (forget, input, and output), and one state value.
RNNs account for 29% of Google’s inference traffic [23].
All DNNs typically use one or more fully-connected (FC)

layers at the end to perform the actual data classification.
MLPs are built using multiple fully-connected (FC) layers
and are the most general forms of DNNs. DNNs also employ
other layers such as pooling (POOL) to reduce the outputs
of multiple neurons into one. Table 1 lists some of the most
popular DNNs in use today.

2.2 Dataflows in a DNN

In this work, we define “dataflow" as the data communication
pattern within a DNN accelerators between the compute and
memory elements. Dataflow affects the data reuse pattern,
which is critical to throughput and energy efficiency of the
accelerator, and has thus been the subject of active research
recently. We identify three factors that affect the dataflow.

 for(n=0;n<N;n++) {
 for(m=0;m<M;m++) {
 for (c=0;c<C;c++) {
 for(i=0; i<H; i++) {
 for(j=0;j<H;j++) {
 for(rx=0;rx<R;rx++) {
 for(ry=0;ry<R;ry++) {

O[n][m][i][j] = … }}}}}
Full Convolution

∑ ∑ …∑ W * I

Loop Ordering

∑ ∑ …∑ W * I

Loop Blocking

0

M
∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

0

10

10

20

M-10

M

Buffer

…

Hardware Mapping

NoC

∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

∑ ∑ …∑ W * I

Dataflow Optimization Methods

…

…

Figure 2. Techniques to optimize dataflows in DNN accelerators

Dataflows due toDNNTopology.DNN topologies have
been evolving at timescales of a few months due to the pro-
liferation of deep learning frameworks [28–31] and the avail-
ability of massive datasets. The DNNs listed in Table 1 can
beat humans at vision/speech level tasks. The most accurate
DNNs employ a multitude of layers, and input/filter sizes.
Naturally, these lead to different dataflow patterns based on
the type of layer, and the size, as Section 2.1 alluded to.

Dataflows due to DNN Topology Mapping. The DNN
DFG can be partitioned in multitude ways in computation
order, partitioning size, and hardware mapping of each parti-
tion, as Figure 2 shows. For example, Fused-layer [16] modi-
fied the computation order (loop order) in CNNs to maximize
data reuse that minimizes energy-consuming global commu-
nication between the PE array and the prefetch buffer. Ma et
al. [32] leverage loop blocking, unrolling, ordering to mini-
mize storage in DRAM. All these loop optimizations change
the dataflowwithin an accelerator fabric. For instance, a loop
ordering optimization in a CNN like AlexNet [9] across the
first three layers would lead to a 11x11 filter, 5x5 filter, and
3x3 filter being simultaneously mapped over an accelerator
array which is quite difficult to achieve in most accelerator
implementations, as Section 2.3 discusses.

Dataflows due to DFG optimizations (e.g., pruning

zero edges; sparsity) The DNNDFG can also be changed by
removing redundant parts, especially zero weights or inputs,
because a multiplication with zero is always zero, and does
not affect the result of the accumulation. EIE [7] reported that
the percentage of zeros inweights from practical benchmarks
ranges from 4% to 25%, which implies that we can reduce
the number of computation from 4% to 25%. This in turn has
led to accelerator implementations optimized for handling
the unique dataflows stemming from sparsity [7, 8, 20].

In summary, various DNN topology and DFG transforma-
tions/pruning lead to different dataflow patterns. In particu-
lar, to exploit the benefits of DFS optimization and pruning,
hardware support is essential. Therefore, we need DNN accel-
erator designs that can efficiently handle myriad dataflows.

2.3 Challenges with supporting flexible dataflows

The big challenge with DNN accelerator ASICs today is that
the design process tightly couples PEs and theNoC. A generic

Distribute Sending input activations and filter weights for each neu-
ron to the various PEs from the PB. Distributes can be uni-
casts, multicasts or broadcasts, depending on the dataflow
mapping.

Compute The multiplication of input activations with the weight to
generate a partial sum (psum) in each PE.

Reduce Adding the partial sums generated by PEs to generate the
output activation of each neuron.

Collect Transferring the final output activations frommultiple PEs
to the PB, to be used as inputs to the next layer. Collect
can also be used to store psums in case the entire neuron
does not fit over the PE array.

Table 2. Taxonomy of On-Chip Communication Flows.

all-to-all NoC like a crossbar or a mesh is extremely area
and power inefficient [6, 33] for an array of 100s of tiny PEs,
and as a result almost every DNN accelerator has used a
hierarchy of buses [6, 14, 34] and/or trees [34, 35]. For in-
stance, Eyeriss [6] uses buses to connect 12 PEs together in
a row, and 14 rows are connected together by another bus.
SCNN [8] creates clusters 4x4 PEs with adder trees internally,
and an external bus connecting to on-chip SRAM. The size
of each cluster is often determined by the nominal size of the
filters (3×3 or 4×4), and the buses/trees optimized for data
distribution and collection from these. This rigid structure
restricts arbitrary filter sizes or cross-layer dataflows from
being supported in these designs. Moreover, when optimiza-
tions such as sparsity are introduced, the filter sizes can vary
dramatically while the size of the PE clusters is fixed, leading
to inefficient utilization as we demonstrate in this work.
FPGAs have been popular substrates to evaluate vari-

ous dataflows [35–37] as they provide the flexibility of run-
ning different dataflows based on their reconfigurable sub-
strate. A recent work explored FPGA design optimization
for DNN [35] demonstrates that the nominal tiling factor
for CNN computation can vary layer by layer and generates
optimized RTL for every layer. Fused CNN [36] augments
this approach to support cross-layer dataflows on FPGAs.
However, while FPGAs vs. ASICs for DNNs is an ongoing
debate, with the flexibility being touted as a reason to prefer
the former, the area, timing, and power-efficiency of ASICs
is still the strong case for ASICs.

The goal of this work is to provide the flexibility afforded
by FPGAs today in terms of flexible dataflow support to ASIC
accelerators. Our key idea is to use a homogeneous, rather
than hierarchical, design and provide flexibility within the
NoC topology to create virtualized clusters of arbitrary sizes
at runtime.

2.4 Taxonomy of communication flows

Without loss of generality, we assume a DNN accelerator im-
plementation comprising of an on-chip memory buffer (that
we call a prefetch buffer (PB)) to prefetch inputs/weights/in-
termediate values from DRAM), and a multitude of PEs. Any
dataflow pattern mapped over these PEs can essentially be

Input _L

Fwd_In_L

Fwd_Out_L
Input _R

Fwd_In_R

Fwd_Out_R

Output_Up

+/>

(a) Adder Switch (AS)

(d) Configurable
Look-up Table (LT)

Lookup
Address

Table
Value

(e) Prefetch Buffer (PB)

Data
Address

Data
Output

(f) Reduce Network (RN)

(b) Multiplier Switch (MS)

Data_In

Fwd_In Fwd_Out

Data_Out
X

The AS is an adder augmented with a
tiny switch that enables us to map
arbitrary adder trees over our non-
blocking reduce network called ART.
It also contains comparators for
pooling operations.

Building Block Description

The MS is a multiplier augmented with
a tiny switch that is used for local data
forwarding. It is used by CNNs for
generating partial sums from weights
and input activation values, and by
RNNs for generating gate values, input
activations, and previous output
activations.

LTs implement activation functions
such as sigmoid or tanh. We load all
the necessary functions for a neural
network and change its target function
in run time based on the configuration
generated by MAERI.

The PB works like a cache memory
between DRAM and the computation
units. We implement this as a private
scratchpad. Because the
characteristics of a prefetch buffer
would differ based on SRAM
technology library and they are usually
commercial libraries, we provide a
default multi-banked implementation
using flip-flops.

The RN is a network structure for
reduce and collection operations. It is
based on a new adder tree structure,
augmented reduction tree (ART) we
propose in this paper. ART facilitates
mapping multiple configurable non-
blocking adder trees and minimizing
inactive multiplier switches.

The DN is based on a chubby-tree
structure, which is a tree-based
network with wider link bandwidth in
higher levels of a tree. We exploit
abandunt bandwidth at high level links
to enable multicast functionality, which
is one of the most common traffic
patterns in DNN accelerators.

Data_In
Data_Out_L

Data_Out_R

(c) Simple Switch (SS)

The SS provides 1:2 switching
functionality in the distribute network’s
chubby tree nodes.

AS

MS

(g) Distribute Network (DN)

SS

MS

1X or 2X of
output bandwidth

Figure 3. The microarchitecture of building blocks used in Maeri
and description of them.

abstracted to perform one of four operations listed in Table 2.
We use this taxonomy throughout this work.

3 Maeri Building Blocks

Figure 1 provides an overview of the Maeri microarchi-
tecture. We use a homogeneous design with plug-and-play
building blocks that are listed in Figure 3. A prefetch buffer
(PB) serves as a cache of DRAM, and stores input activations,
weights, intermediate partial sums that could not be fully
accumulated, and output activations. Lookup Tables (LTs)
implementing activation functions are located between the
root of the reduction-tree and the PB. The secret sauce that
enables our flexibility is two-fold:

(i) We augment the multipliers and adders with config-
urable switches, calling themmultiplier switch (MS) and adder
switch (AS) respectively, enabling Maeri to optimize for the
collective communication patterns.
(ii) We use two configurable interconnection networks -

a distribution network, built using tiny simple switches (SS)
sends inputs to the MSes from the PB. A reduce+collect
network, built using ASes, sends outputs back to the PB via
activation units implemented with look-up tables.
The entire accelerator is controlled by a programmable

controller which manages reconfiguration of all three sets of
switches (MS, AS, and SS) for mapping the target dataflow.

We design two novel interconnect topologies specialized
for the distribution and reduction+collection flows, which
we describe next. These networks can be tuned to provide
full non-blocking bandwidth to the compute blocks, but can
be pruned to reduce the bandwidth if required.

3.1 Data Distribution Network

The data distribution network of Maeri sends input activa-
tions and weights from the PB to the MSes. It ensures full
non-blocking bandwidth to all the multipliers.

3.1.1 Topology

We use a binary-tree as our base topology for distributions
as it is multicast friendly, and augment it with (a) chubby
links for supporting higher-bandwidth from the PB, and
(b) forwarding links, to implementing store-and-forward
multicasts for CNNs. We describe these next.

Chubby Links from Root. A fat-tree supports 2x band-
width at every level from the leaves up to the root, and is a
classic topology for providing non-blocking bandwidth, and
is used extensively in datacenter networks [38]. However,
such a topology is infeasible to build on-chip since the band-
width requirement at the root would require too many wires
and ports at the PB, resulting in significant area and power
overheads2. To address this design-challenge, we propose a
Chubby tree, where the bandwidth at the upper levels is
either 2x or the same as that at the lower levels. For example,
in Figure 4, the bandwidth of link level 0 is twice of that of
link level 1, but the bandwidth of link level 2 and 3 is 1x.
We size the bandwidth at the root to equal that of the

PB, and taper the width going down the tree, providing non-
blocking flows till that level. Once bandwidth becomes 1x, the
bandwidth for the rest of the levels are compensated for by
adding local buffers at the MSes to hide the communication
delay due to multiplexing of links at the 1x levels.

Forwarding Links at Leaves.Maeri provides local data
forwarding links (FL) between the leaves (i.e., adjacent MSes)
in the distribution network, as shown in Figure 5 to provide
store-and-forward multicast for input activation values. We

2For a fat-tree network, 256 MSes would require a 256 ported SRAM.

From Prefetch buffer 8x

Link
Bandwidth

4x
2x
1x

Link Lv: 0

Link Lv: 1

Link Lv: 2

Link Lv: 3

Figure 4. Example of chubby distribution tree. Leaves are multi-
plier switches. Other nodes are simple switches without compute
units.

X X X

Fwd Data (sw0->sw1)

Mult. Switch 0 Mult. Switch 1 Mult. Switch 2

Fwd Data (sw1->sw2)

Figure 5.Data forwarding links (thick arrows) facilitate data reuse
between adjacent multiplier switches.

highlight their use for CNNs in Section 4. The FL’s are unidi-
rectional since Maeri maps data over the multiplier switches
in order, so input activation values flow in one direction.

3.1.2 Microarchitecture, Routing and Flow-Control

The distribution tree nodes use a simple switch (SS) whose
microarchitecture is shown in Figure 3. SSes are bufferless
demuxes with a select line that is set by the input data di-
rectly. SSes to chubby links are direct connections, since no
bandwidth sharing is being done.
Since the topology is binary-tree based, input data is

source routed, with a bit to choose between the left and
right paths at each switch. Since the SSes are bufferless, the
flow-control is end to end between FIFOs at the MSes and
the PB. Also, we provide single-cycle traversals from the PB to
the leaves (MS) for every piece of data.

3.2 Data Reduction and Collection Network: ART

Binary trees are well-suited for performing reductions and
have been used in prior DNN implementations [3, 4, 17, 19,
21] to implement adder trees within the PE clusters described
in Section 2.3. However, they have a key inefficiency: the
fixed topology of a tree is inherently inefficient whenever
the number of partial sums to be accumulated is smaller
than the width of the adder tree. Figure 6(a) illustrates this.
Suppose there are 16 multipliers, all connected via a 16-node
binary reduction tree. Each node in the reduction tree is an
adder. This tree is perfect for performing a reduction for a
16-input neuron. However, suppose we map three neurons
over these multipliers, each generating five partial sums, as
Figure 6(a) shows. Each neuron requires four additions to
generate an output, so the total additions required is 12. The
reduction tree contains 16 adders, which should be sufficient
to perform the additions for all neurons in parallel. However,
the four links in red are shared by multiple neurons, limiting
the tree from generating all three outputs simultaneously.

More formally, the challenge pertains tomapping arbitrary
number of reduction trees over an underlying fixed topology.
To provide flexibility to support any mapping, this needs to
be addressed, otherwise there would be a drop in utilization.

(a) Plain Reduction Tree

++++++++

++++

++

+

Nueron 1 Neuron 2 Neuron 3

++++++++

++++

++

+

Neuron 1 Neuron 2 Neuron 3
(b) Reduction Tree

with forwarding

++++++++

++++

++

+

Neuron 1 Neuron 2 Neuron 3
(c) Reduction Tree with

forwarding and extra bandwidth

++++++++

++++

++

+

(d) Augmented
Reduction Tree (ART)

Figure 6.Motivation for Augmented Reduction Tree (ART). Three
neurons are mapped over five multipliers each. Each neuron gener-
ates one output using the adder tree for reduction. Red links in (a)
and (b) represent congested links, thick links in (c) and (d) represent
links with double bandwidth. The forward links (FL) in the ART
are bi-directional.

We solve this challenge by proposing a new tree topology
called an Augmented Reduction Tree (ART).

3.2.1 Topology of ART

The ART is a binary-tree augmented with additional links
to enable multiple arbitrary sized reductions to run in a non-
blocking manner.

Forwarding Links at Intermediate Levels. Figure 6(b)
shows a binary tree with additional links for forwarding the
adder outputs to other adders at the same level, instead of
to the parent. This removes contention from three out of
the four links, and only one link is shared by Neuron 2 and
Neuron 3.

Chubby Links from Root. Physical bandwidth limita-
tions at the root node can limit the number of parallel re-
ductions (collects) as Figure 6(b) showed. To address this,
we augment the ART with chubby links, just like the one in
Section 3.1. This eliminates contention completely, as shown
in Figure 6(c).

3.2.2 Formal Definition and Properties of ART

Figure 6(d) presents an example of an ART. We formally
define it and present two key properties.

Definition. Augmented Reduction Tree is an undirected
graph that consists of a complete binary tree and additional
links that connects adjacent tree nodes in the same level with
different parents except between leaves.

Property 1: Configurability. An ART with N leaves can
map any adder tree onto its substructure when the adder tree
accumulates values from k consecutive leaves and k < N.

Property 2: Non-Blocking. An ART can map multiple of
such adder trees mentioned in (1) without any sharing any link
if the sets of leaves of each adder tree are all disjoint.

Property 1 guarantees any sized reduction operation can
be mapped over an ART. Property 2 guarantees that multiple
non-blocking reduction operations can be mapped over an
ART. For example, if an ART has 32 leaves and we map

Span of target leaves

++

++

T3 T4 T5 T6

FL+

T1 T2

+

T7 T8

(a)

+

++

++

T3 T4 T5 T6

FL+

T1 T2

+

T7 T8

Span of target leaves
(b)

+
Active Node: +

Active Link:

ASAASB

ASC
ASD

ASE ASC
ASD

ASE

ASAASB

Figure 7. Two examples of forwarding link reconfiguration.

multiple adder trees that accumulates five values, ART can
accommodate four adder trees at the same time providing
non-blocking reduction.

We have formally proved these two properties. However,
in the interest of space, we provide an intuition on why the
ART supports multiple parallel reductions, and will provide
the formal proof as supplementary material once Maeri is re-
leased. Intuitively, additional connectivity between adjacent
adder switches on the same level, but with different parents,
provides opportunity to accumulate more partial sums closer
to the lower levels which reduces the number of required
links in upper levels. Without the additional connectivity,
partial sums from the adjacent nodes have to traverse upper
levels to be accumulated, increasing the possibility of link
congestion. We do not add forwarding links (FLs) between
nodes sharing the same parent node because the parent node
anyway needs to be traversed to reach the top.

3.2.3 Microarchitecture, Routing, and Flow-Control

The ART is built using adder switches (AS), whose microarchi-
tecture is shown in Figure 3. Each AS is statically configured
to act as either 2:1 ADD, 3:1 ADD, 1:1 ADD plus 1:1 forward,
or 2:2 forward. Section 4.1 describes the configuration algo-
rithm. Each AS also houses a comparator for POOL layers.

4 Mapping Dataflows over Maeri

Our dataflow mapping is mapping neurons one by one over
the MSes. We call this Virtual Neuron (VN) Construction. It
essentially means configuring the ART, since that is the one
that decides which multiplier outputs need to be reduced.

Once the ART is configured, each VN can operate in paral-
lel. The dataflow flexibility in our design comes from allow-
ing each VN, which is a MAC operation, to take arbitrary
number of MSes (rather than relying on fixed clusters). We
also support folding of a VN over itself and multiplex multi-
ple multiply operations over fewer MSes (Section 4.8).

4.1 Virtual Neuron (VN) Construction over ART

We describe the algorithm for VN construction over the ART
for the example in Figure 7(a). Each triangle represents a
sub-tree, and each circle is an AS. We focus on the FL marked
in the figure. Here, the VN spans from T2 to T6 (Figure 7(a)).

Step 1: Compute the span of the neuron on the left

and right side of the FL. Set the direction of the FL

from the smaller to the larger span.We define span to be
the number of sub-trees that the VN (generating the psums)
crosses. In Figure 7 (a), the VN spans from T2 to T4 (i.e.,
three) on the left, and from T5 to T6 (i.e., two) on the right.

The direction of the FL is set from right to left. If the spans
are same, then the direction can be set arbitrarily.

Step 2: Check if the sub-trees in direction of the smaller

span need to use the parent to this FL on that direction.

If not, activate this FL. The parent of FL on the right side
(i.e., PR) does not need to be activated for this neuron, since
T7 and T8 are not part of the span. Thus the FL is activated
by configuring ASA to forward the output from T5 to ASB ,
and ASB to act as a 3:1 adder.

Figure 7 (b) shows an alternate scenario. Here, Step 1
determines the direction to be left to right. However, on the
left, theASC has to be activated regardless of the FL, because
T2’s output goes to it, hence FL does not need to be activated.
ASB is configured to forward its output to ASC , not ASA.

How is the span computed by the algorithm?We rep-
resent the leaves (MSes) spanning each neuron using a bit-
vector. The ART controller starts from FLs in the lowest level
to activate FLs, before going up the levels. The number of
bits that are 1 on the left and right of this FL in the bit-vector
are used to compute the span. Whenever a FL is activated,
the bits corresponding to smaller span (i.e., the leaves that
will create the psums that will cross this FL) are cleared. This
prevents activating multiple FLs in different levels of the
ART for the same partial sums.

Next, we demonstrate how example DNN dataflows can
be mapped over Maeri.

4.2 Mapping a CONV Layer

We demonstrate how a CONV layer can be mapped over
Maeri with a walk-through example in Figure 8. The weight
filter is 2x2, and the input/output activations with one chan-
nel are 4x4. This example assumes that each MS stores one
input activation and one filter weight value locally and the
chubby ART, together with the PB, provides sufficient band-
width to cover all simultaneous reduction flows.

Stage 1: VN Construction. Maeri first constructs a VN
by configuring the ART based on the dimension of the tar-
get CNN layer, as Figure 8-(1) shows. The controller then
maps the filter weights to a set of consecutive multiplica-
tion switches in each VN, and configures the corresponding
sub adder tree of the ART using the reconfiguration algo-
rithm described earlier in Section 4.1. Each VN is responsible
for generating one row of output activations, and two VNs
can share one AS. In the example, VN 0 and 1 share the AS
marked in purple. Although an AS (or a node of the ART) is
shared, the overall structure still maintains the non-blocking
feature since one of the inputs is sent up the tree, and the
other is sent laterally using the forwarding link simultane-
ously, as Section 4.1 described.

This configuration step happens before running each CNN
layer and remains constant throughout the run. In case the
layer does not fit, it can be folded and mapped multiple times
as we explain later in this section.

VN 2VN 0 VN 1

(1) Virtual Neuron Construction

++++++++

++++

++

+

Mult. valA
Mult. valB

To/From Prefetch Buffer

VN 2VN 0 VN 1

(2) Weight / Input Activation Distribution

++++++++

++++

++

+

W00 W01 W10 W11 Mult. valA
Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11 W00 W01 W10 W11

VN 2VN 0 VN 1

(3) Output Activation Calculation

++++++++

++++

++

+

W00 W01 W10 W11

X01 X11

Mult. valA
Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11

X11 X21

W00 W01 W10 W11

X21 X31

X00 X01 X10 X11 X10 X11 X20 X21 X20 X21 X30 X31

X12 X22 X32

O00 O10 O20

X02 X12 X22

VN 2VN 0 VN 1

++++++++

++++

++

+

W00 W01 W10 W11

X02 X12

Mult. valA
Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11

X12 X22

W00 W01 W10 W11

X22 X32

X13 X23 X33

O01 O11 O21

X03 X13 X23

(3)-(a)

X01 X02 X11 X12 X11 X12 X21 X22 X21 X22 X31 X32

(3)-(b)

X02 X03 X12 X13 X12 X13 X22 X23 X22 X23 X32 X33

W00 W01
W10 W11

=X

X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33

Input ActivationFilter Output Activation

CNN Computation

O00 O01 O02 O03
O10 O11 O12 O13
O20 O21 O22 O23
O30 O31 O32 O33

Slides

Oij = W00 X Xij + W01 X Xi(j+1)

+ W10 X X(i+1)j + W11 X X(i+1)(j+1)

Figure 8. CONV computation in Maeri.W, X, and O represent
weights, input activations, and output activation, respectively. The
indices of W, X, and O represent the position of each value within
each matrix.

Stage 2.1: Weight Distribution. Next, Maeri starts to dis-
tribute filter weights, as Figure 8-(2) shows. Recall that in
CNNs, theweightmatrix slides over input images (Section 2.1);
as a result the same weight value is required by multiple
VNs, each of which is computing an output activation. We
exploit the multicast functionality of the distribution tree,
by sending one value from the PB and replicating it at the in-
termediate simple-switches. For example, weight W00, W01,
W10, and W11 are sent to the first, the second, the third, and
the fourth multiplier switch in each VN, respectively. We
can exploit the bandwidth of the chubby tree structure to
deliver multiple unique weights simultaneously to different
multiplier switches. Because each VN requires the same set

VN 0 VN 1

(1) Gate Value Computation

++++++++

++++

++

+

F00 F01 F02 F03 BfHp0 F10 F11 F12 F13 BfHp1

X00 X10 X20 X30 1 1 X01 X11 X21 X31 1 1
Mult. valA
Mult. valB

f0 f1

To/From Prefetch Buffer

VN 6VN 5VN 4VN 3VN 2VN 0 VN 1

(3) State Value Computation

++++++++

++++

++

+

A
B

s0

f0 i0

sp0 t0

f1 i1

sp1 t1

f2 i2

sp2 t2

f3 i3

sp3 t3

f4 i4

sp4 t4

f5 i5

sp5 t5

f6 i6

sp6 t6

To/From Prefetch Buffer

s4

s1 s3 s5

s6s2

VN 6VN 5VN 4VN 3VN 2VN 0 VN 1

(4) Output Activation Computation

++++++++

++++

++

+
H0

o0

sa0
o1

sa1
o2

sa2

o3

sa3

o4

sa4

o5

sa5

o6

sa6

To/From Prefetch Buffer

H4

H1 H3 H5

H6H2

VN 0 VN 1

(2) Input Transform Computation

++++++++

++++

++

+

C00 C01 C02 C03 BcHp0 C10 C11 C12 C13 BcHp1

X00 X10 X20 X30 1 1 X01 X11 X21 X31 1 1
Mult. valA
Mult. valB

t0 t1

To/From Prefetch Buffer

H0 H1 H2 H3=

Filters

Input Activation Output Activation
(Prev)

Hp0 Hp1 Hp2 Hp3

Output Activation

X

X
+

Filters

RNN(LSTM) Computation

F00 F01 F02 F03… …
I00 I01 I02 I03… …
O00 O01 O02 O03… …
C00 C01 C02 C03… …

X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33

Fh0
…

… Ih0
…

…

Oh0
…

… Ch0
…

…

A
B

Figure 9. LSTM RNN computation in Maeri. F, I, O, and C indi-
cate weights for forget/intput/output gated and input transform
multiplied with input activations. Fh , Ih , Oh , and Ch represent
weights for forget/intput/output gated and input transform mul-
tiplied with previous output activations. X and H represent input
and output activations. The indices of F, I, O, and C indicate the
ID of corresponding neuron and position within the weight vector
(e.g., F30 indicates the first forget gate filter weight value for neuron
4.) The index of Fh , Ih , Oh , and Ch means its corresponding neu-
ron ID (e.g., Ch3 represents the filter weight value to be multiplied
with the previous output activation in neuron 4). The four steps
presented generate an output activation for each VN. fk , ik , ok , and
tk represent forget/input/output gate values and input transform at
the current time epoch. Bf , Bi , Bo , and Bc are bias values for each
gate value and input transform. sk and spk are the state values for
the current and previous epoch, respectively.

of weight values, the PB distributes weights only once for
every CONV layer, which remain stationary throughout the
run of the layer.

Stage 2.2: Input Activation Distribution. The same in-
put activations are used by multiple neurons, just like the
weights. For example, both VN 0 and 1 require input acti-
vations X10 and X11, and both VN 1 and 2 require X20 and
X21. These are multicasted from the PB. Unlike weight dis-
tribution, the distribution of new input activations from the
PB needs to be performed whenever each VN has finished
computing all psums for one output activation. This part is
overlapped (pipelined) with the generation of output activa-
tions (Stage 3). For instance, in Figure 8-(3a), we can see that
new input activations X02 and X12 arrive at VN 0, X12 and
X22 arrive at VN 1, and so on, while it is computing O00.

We model the sliding window behavior of the CNN filter
weight matrix by using the local forwarding links between
the multiplier switches. Each input activation is forwarded
left up to the width of the filter row (which is two in this ex-
ample) and then discarded. For instance, in Figure 8-(3a), we
can see that new input activations X01 and X11 are forwarded
from the second and fourth MSes to the first and third re-
spectively. Because of the data forwarding, each VN requires
only two new input activation values (same as row size of
the filter) from the PB every cycle, for generating a new out-
put activation. This reduces the bandwidth requirement of
the distribution tree, and the overall energy consumption by
reducing the interconnect traversal length.

Stage 3: Output Generation. After the series of initializa-
tion steps (VN construction and weight/input activation dis-
tribution) finishes, Maeri starts to produce output activation
values. Each VN generates output activation values for one
row of the output matrix.For the CNN computation example
in Figure 8, Figure 8-(3) shows VN 0 producing O00, followed
by O01, and so on. Similarly, VN 1 generates O10, O11, O12,
and O13. After finishing one row, input activations corre-
sponding to another row are mapped on the VN, and so on
till the end of the current convolution layer.

Optimizing for Spatial Reuse in CNNs. Maeri tries to
optimize and get the best of the three kinds of dataflows de-
scribed in the Eyeriss [25] taxonomy. Each multiplier switch
acts as a weight stationary node without requiring weights to
be forwarded back and forth. Each row of the weight filter is
mapped sequentially across the multipliers of a VN making
it row stationary. And finally, the configurable ART within
each VN acts like an output stationary node as it accumu-
lates psums locally. Together, we get a design optimized for
high-throughput and low-energy.

4.3 Mapping a RNN/LSTM Layer

Figure 9 shows how Maeri runs a LSTM layer. A LSTM
computation consists of four steps: calculating (1) gate values,
(2) input transform, (3) next state value using the results from
step 1 and 2, and (4) output activation using the results from
step 1 to 3.

VN 1 VN 2VN 0 VN 3

(4) Sparse Convolution

++++++

+++

++ +

To/From Prefetch Buffer
VN 2VN 0 VN 1

(1) Pooling Layer

>>>>>>
>>>

>> >

To/From Prefetch Buffer VN

(2) Fully-Connected Layer

++++++

+++

+

+

VN 1 VN 2VN 0 VN 3

(3) Hybrid Mapping

+>>>++

+>+

+ +

…… … … …

…

Figure 10. Mapping POOL, FC, Cross-Layer and Sparse CNNs over Maeri.

Gate values and input transform calculation. For step
1 and 2, Maeri first constructs VNs. Maeri distributes input
activations and weights, and performs the same multiply-
accumulate computation as the CONV example. However,
unlike the CONV case, it iterates four weight filters (for-
get/input/output gate and input transform) and reuses input
activation values for each gate value and input transform
computation. Step 1 and 2 require the same number of MSes
within a neuron and share the same input activation data set;
thus we merge them in Maeri. In other words, when each
VN receives input activations, it reuses them to calculate
all the gate values (step 1) and input transforms (step 2) for
the received input activation, before the PB distributes the
next round of input activation. The computed gate values
are collected by the PB (over the ART) and stored.

State value and output activation calculation. After the
completion of step 1 and 2 over target input activations (X),
Maeri reconstructs VNs to calculate state and output acti-
vation values, as Figure 9-(3) and (4) show. The reason for
reconstructing VNs is because the calculations in step 3 and
4 requires fewer number of multiplier switches; Retaining
the same VN configurations as step 1 and 2 would lead to
underutilization of the available multipliers. However, some-
times reconstructing VNs between step 3 and 4 may not help
if the VNs are too fine-grained (say each VN just has two
multiplier switches), since the ART might not have enough
bandwidth to compute and transmit all output activations
to the root every cycle. Our optimization tool considers this
aspect and generates appropriate parameters for the ART
controller so Maeri can prevents such a contention scenario.

Step 3 and 4 also calculates partial sums and accumulates
them like all the other CNN/RNN computation steps. For
state value computation (step 3), each VN receives the previ-
ous state value calculated in the previous time epoch from
the PB using the distribution tree, and the forget/input gate
values and input transform calculated in step 1 and 2 in the
current time epoch. It then generates the current state values
based on the received values, as Figure 9-(3) shows. For the
output activation computation (step 4), each VN receives the
output gate value and current state value, multiplies the two,
and sends the result over to the activation units to produce
the final output activation.

4.4 Mapping a POOL Layer

Mapping a POOL layer over Maeri requires creating a VN
with with the values to be pooled, and configuring the AS to
act as a comparator, rather than an adder. The output of the
ART is then the pooled value.

4.5 Mapping a FC Layer

A FC neuron gets inputs from all neurons in the previous
layer. Correspondingly, the VN for this can be mapped as
before, except that it would span many more MSes. In the
extreme case, the entire ART can be configured to compute
the output for one neuron, as Figure 10 shows. In case one
neuron does not fit over the free MSes (either because the
number of inputs is greater than the total MSes, or some of
the MSes are already configured into other VNs), the neuron
can be mapped via folding, as Section 4.8 discusses.

4.6 Mapping Cross-Layers

A cross-layer mapping [35–37] can easily be supported over
Maeri since each VN can be independently configured. Thus
each VN could correspond to neurons of the same layer (as
Figure 8) illustrated, or different layers (Figure 10), without
requiring any change in the algorithm. In the latter case, the
intermediate output from the PB need not be sent to DRAM,
but can be streamed to the next VN on-chip directly.

4.7 Mapping Sparse Networks

Mapping sparse CNNs is also quite trivial in Maeri, as Fig-
ure 10 shows. The size of each VN would be different size
since the filter sizes vary depending on weight sparsity. Note
that Maeri can support mapping of sparse CNNs but might
still need additional support to identify sparsity and stored
compressed data [7, 8].

4.8 Optimization: Folding over Rows

There can be multiple reasons to fold a physical neuron over
fewer MSes than its inputs, such as: (i) there are insufficient
MSes, or (ii) the bandwidth of the PB or the chubby distribu-
tion tree is insufficient to cover all the input activation values
during output activation calculation, (iii) the VN is memory
bound and waiting for data from DRAM. To support N-way
folding, MSes need to have at least N local buffers. This
increases their area and power, but lowers the bandwidth
requirement from the network.
For example, in Figure 8, we can allocate two multiplier

switches rather than four within a virtual neuron. In such
a mapping, the output of the VN through the ART is an
intermediate psum (one row of the filter in this example).
This is sent to the PB for temporary storage and then sent
back to the corresponding VN to be accumulated into the
final output activation that is sent to the activation units.

Ar
ea

 (m
m

)2

0
1
2
3
4
5
6

Ar
ea

 (m
m

)2

0
1
2
3
4
5
6

Maeri SA Eyeriss Maeri SA Eyeriss

Maeri SA Eyeriss Maeri SA Eyeriss

0

100

200

300

Po
w

er
 (m

W
)

0

200

400

600

Po
w

er
 (m

W
)

C
om

p.
M

at
ch

Ar
ea

M
at

ch

(a) (b)

(c) (d)

N
or

m
al

ize
d

Ar
ea

0

1

Number of PEs

Systolic Array
Eyeriss
MAERI

16 32 64 128 168 16 32 64 128

2

3

(e)

Legend (e)

Legend (a-d)
Multiplier Switch
Reduction Network
Distribution Network
Local Buffer
Prefetch Buffer
Lookup Table
Compute (SA and Eyeriss)
Interconnect (SA and Eyeriss)

Figure 11. Area and power breakdown of MAERI, systolic array and Eyeriss. Comp match (a,b) and area match (c,d) indicate design points
with the same number of compute units and area as Eyeriss (Table 3). The left and right column plots area (a, c) and power (b, d), respectively.
(e) plots the post place-and-routed area of MAERI, systolic array and Eyeriss, normalized to the 16 PE systolic array.

Design Eyeriss SysArray

(Comp)

SysArray

(Area)

MAERI

(Comp)

MAERI

(Area)

Technology 28nm 28nm 28nm 28nm 28nm
Number of PEs
(MultSwitches)

168 168 1192 168 374

Local SRAM/PE 512B 0 0 512B 512B
Prefetch Buffer 108 KB 80KB 80KB 80KB 80KB
Area 6mm2 2.62mm2 6mm2 3.84mm2 6mm2

Table 3. Maeri implementation details and comparison with Eye-
riss and Systolic Array. SysArray/MAERI (Comp) and SysArray/-
MAERI (Area) are Systolic array/MAERI implementations that have
the same number of compute units and area as Eyeriss respectively.

5 Implementation

We implementedMaeri in BSV (Bluespec SystemVerilog) [39]
and synthesized it with TSMC 28nm standard cell and SRAM
library at 200MHz. For comparison, we also synthesized and
placed-and-routed Eyeriss [6]3 and a systolic array [23] in
our 28nm environment. We created two design points - one
where all three accelerators have the same number of com-
pute (i.e., multiply-accumulate or MAC) units and SRAM size,
and one where all three have the same chip area, as Table 3
shows. We find Maeri to be more area-efficient than Eyeriss
for two reasons: (i) its fine-grained MS and AS together are
much more area-efficient than a full PE, and (ii) Maeri does
not require fully-addressable local register file like Eyeriss;
it uses FIFOs instead and relies on delivery of the correct
data in the correct order via the distribution tree or local for-
warding links. For the same area, Maeri and systolic array
can house 206 (2.23 ×) and 1024 (7.09 ×) more compute units
than Eyeriss.

Because of the larger number of compute units andMaeri’s
near 100% utilization based on its fully non-blocking trees,
synthesis tools report higher power in Maeri than Eyeriss.
Thinning the adder tree links can bring us to the same power
point, while still offering full configurability but at a loss of

3We thank the authors of Eyeriss for sharing their RTL with us.

0

50

100

150

N
or

m
al

iz
ed

 L
at

en
cy

C1 C2 C3 C4 C5 C1 C3 C8 C10 C12
Alexnet VGG-16

Systolic Array
Row-stationary
MAERI (This work)

Figure 12. Total latency and compute unit utilization of systolic
array(SA), Eyeriss [25] style row-stationary accelerator, and Maeri
with 64 PEs (multiplier switches) for selected conv layers in Alexnet
and VGG16. The latency is normalized to the first Alexnet convo-
lutional layer delay in an ideal accelerator with 64 PEs, infinite
bandwidth between all the PEs and the PB, and 1-cycle fixed point
computational units.

50B

100B

150B

200B

0 10 20 30 40 50La
te

nc
y

(C
yc

le
s)

Maeri (BW 1X)
Maeri (BW 0.25X)
Baseline 4x4 Cluster

0

40
20

60
80
100

U
til

iz
at

io
n

(%
)

10 20 30 40 50
Zero Weight Rate (%)

Figure 13. Total latency for VGG16 convolutional layer 8 (C8
in Figure 12) for sparse workload. Maeri includes 64 MSes. The
baseline uses four 4x4 PE clusters connected by buses.

full utilization every cycle, which might be an acceptable
trade-off as a lot of DNN layers are memory-bound [23]. The
prefetch buffer (SRAM) dominates in both area and power in
the two designs. For the same number of PEs (compute units),
the systolic array required the smallest area and power be-
cause of its simple structure (MACs connected in a grid). This
is also illustrated in Figure 11(e). However, systolic array suf-
fers from low utilization [23] and requires a large number
of SRAM reads because of the lack of data reuse inside a PE
array as we demonstrate later in Section 6.3.

1.5

1

0.5

0

M
AE

RI
 S

pe
ed

 U
p

(X
)

MapA
55
60
65
70
75
80
85 U

tilization (%
)

MapB MapC MapD MapE

SpeedUp
Utilization(MAERI)
Utilization(Baseline)

1.08 1.07

1.50
1.23 1.33

Figure 14. Speed up of Maeri over a 64 PE baseline (four 4x4
clusters) with hybrid cross-layer dataflow. MapA-E are Alexnet
conv1+2+3, 2+3+4, 3+4+5, 1+2+3+4, and 2+3+4+5 respectively.

6 Evaluations

6.1 Performance with regular (dense) dataflow.

Given the same number of compute units, the performance
of a spatial accelerator depends on both the utilization of the
compute units, and the internal dataflow (which determines
reuse and activity). We plot the total latency for running
selected convolutional layers in AlexNet and VGGnet in Fig-
ure 12 across the following designs: Maeri, Systolic Array
and Row-Stationary (i.e., based on Eyeriss [25]) with 64 mul-
tipliers/MACs/PEs respectively. Maeri provides a speedup of
72.4% on average across all layers. We observed 95% utiliza-
tion in average across the multipliers in Maeri. We can see
that large filter sizes, such as AlexNet’s C1 (11×11; requires
temporal folding) and C2 (5×5) layers are adversarial for
Maeri as they lead to large VNs, leading to underutilization
of the remainder MSes. But recent CNNs like VGG-16 with
3×3 filters provide the best utilization by allowing seven
filters to be mapped simultaneously over the 64 MSes with
only one MS idle.

6.2 Performance with irregular dataflow.

Sparse Dataflow. Figure 13 represents the total latency of
VGG16 convolutional layer 8 with varying percentage of zero
weights executed on Maeri with 64 multiplier switches and
different chubby tree bandwidths (1X and 0.25X represent
the bandwidth at the root of the tree, i.e., the non-blocking
factor). The baseline is modeled similar to SCNN [8] and uses
fixed 4x4 PE sized clusters. Even when the workload is dense
(i.e., percentage of zero weights = 0), Maeri provides better
utilization. This is because VGGNet uses 3x3 filters (and 3
channels). So each OFMAP requires 3x3x3=27 MACs, which
use exactly 27 Multipliers/Adders in MAERI, and (4x4)x2=32
MAC units in the baseline, lowering utilization.
When the workload is sparser, the bandwidth require-

ment for partial sum collection increases because the PE
array (multiplier switches and ART in Maeri) can cover
more number of neurons at the same time. This becomes a
bottleneck for the baseline where the clusters are connected
by a bus (which limits bandwidth) even though the total
number of computations goes down in a sparse workload.
In contrast, Maeri provides 73.8% utilization even at 50%
sparsity, and correspondingly 6.9 × speedup.
Cross-LayerDataflow.Wemodel five cross-layer dataflows

by fusing a combination of AlexNet convolution layers. Fig-
ure 14 plots the utilization, and speedup of Maeri over a

40
60
80

0
5 10 15PE

 U
til

iz
at

io
n

(%
)

ART
Plain Adder Tree
Fat Tree

20 25 30
Virtual Neuron Size

20

100

Figure 15. PE utilization with ART, fat-tree and four 16-wide
plain adder trees when 64 PEs are used.

baseline accelerator with four 4x4 clusters (i.e., a 16:1 reduc-
tion trees in each). We observe 1.08 - 1.5 × speedup. Acceler-
ators based on fixed clusters or fixed sized reduction trees
are inefficient in utilizing all the PEs for certain mappings.
For example, in Map C, we map three convolutional layers
with three 3×3 filters. In the baseline, we can only use 9 PEs
within each cluster; trying to utilize the remaining 7 PEs
introduces non-uniform traffic that fixed interconnection
cannot support. However, MAERI with its flexible intercon-
nects can support such irregularity and thus maintains high
utilization and provides maximum speedup.

6.3 Maeri Deep Dive

ART vs Fat Tree vs Plain Tree. Figure 15 plots the utiliza-
tion of the MSes across three kinds of reduction trees: ART,
fat-tree, and four plain adder trees as the size of each virtual
neuron (VN) mapped over the trees increases. Our aim is
to quantify the benefits discussed earlier in Figure 6. We
can observe that the ART provides relatively uniform and
high utilization while fat tree and plain adder trees involves
significant fluctuation in utilization. Such fluctuations occur
because the efficiency of plain adder trees and fat trees are
highly sensitive to VN size (number of non-zero weights
within a filter of a channel). The plain adder trees have low
utilization because VNs less than size 16 end up instanti-
ating an entire tree with idle multipliers, and thus provide
100% utilization only at a VN size of 16. If the VN size is a
power of 2, the Fat Tree works identical to the ART since
all operations fit within the binary tree structure and the
ART’s forwarding links are not required. When the VN size
is not a power of two (which is the case in VGGnet and in
sparse designs), the utilization of a fat-tree drops but ART
continues to provide high utilization. ART also has fluctua-
tions of utilization in cases where the total multipliers (64 in
this example) is not a multiplier of the VN size as that leads
to idle multiplier switches due to temporal folding (see Fig-
ure 17 (b)). Support from an advanced compiler may enable
utilizing such multipliers by temporally folding large VNs
over few multipliers.

Maeri trees vs. traditional NoCs. Compared to other
traditional NoC designs, the NoC in Maeri is highly area-
and power-efficient, as post-synthesis area and power over-
head over NoC bandwidth plot in Figure 16 presents. The
overhead of the NoC design in Maeri is minimal compared
to mesh or crossbar while the NoC design provides suffi-
cient bandwidth for the traffic in Maeri. This is because the

10M

20M

30M

0
256 512 1024 2048 4096

33M 135M 541M 2167M

5k

Po
w

er
 (m

W
)

0

10k

15k

20k

61k 246k 983k 3931k

256 512 1024 2048 4096

Crossbar
Mesh
MAERI

Bandwidth (Gbps) Bandwidth (Gbps)
(a) Area Requirement (b) Power Requirement

Ar
ea

 (u
m

)2

Figure 16. Area and power comparison between the NoC in
Maeri and traditional NoCs.

NoC architecture in Maeri is optimized just for communi-
cation patterns within DNN accelerators, and it consists of
extremely light-weight building blocks.

Maeri vs. systolic arrays. Systolic array is also consid-
ered as a major approach [23] to implement an accelerator
because of the low PPA cost based on its relatively simple de-
sign and high parallelism it provides. We compare a systolic
array-based design and Maeri using the example presented
in Figure 17, which is a convolutional layer with eight 3x3x3
weight values, 5x5x3 input activation values, and a stride of
one. In the example in Figure 17, both the systolic array (a)
and Maeri (b) contain 64 PEs (i.e., MACs in Systolic array,
multiplier and adder switches in Maeri). The systolic array
reads input activation and weights from the left and the top
of the array, respectively. Because systolic array is based
on store-and-forward dataflow style, a controller needs to
carefully adjust the injection time of each data, which lets
the PEs remove complicated hardware for control data I/O.
For example, if weight value A1 in the first 3D filter (red)
and input activation a1 are injected to PE 0 at cycle t, weight
value A1 in the second 3D filter (blue) needs to be injected
at cycle t+1 because input activation a1 arrives at the PE
1 at cycle t+1. To process one sliding window in the exam-
ple convolution layer, the systolic array needs to read 216
weights and input activation (3×3×3×8). Because each slid-
ing window is mapped on each row of the systolic array,
the systolic array can process eight sliding windows within
an iteration. Each iteration requires not 27 (the number of
partial sums to be generated in a sliding window) cycles but
43 cycles (27 + 8 (injection delay)+ 8 (time to process the
last weight/input activation set, which are weight I3 in the
last filter (green) and input activation y3)) and generates
eight output activations. Because the example requires slid-
ing the window 25 times, the total number of iteration is
four with an incomplete iteration that computes only one
output activation at the last iteration. Therefore, the total
cycles to process the example layer is 156 cycles (43 × 3 + 27).
Although systolic array provides high throughput, it cannot
reuse data within the PE array so it requires to read different
data every cycle to each row and column, which results in
high energy consumption [25]. Therefore, the systolic array
need to read 1,323 times from the SRAM in the example.

In contrast, Maeri minimizes the number of SRAM reads
by weight reuse in multiplier switches and multicasting in-
put activations, which requires 516 reads (35% compared to
the systolic array) for the same example. To the process the
same convolutional layer in the example, Maeri first maps
each channel in 3D filters (nine weights) as a VN across the
multipliers, creating seven VNs in this example (with the
last multiplier idle). We utilize temporary register in each
adder switch to accumulate output activations from folded
filters mapped in different iterations. In this manner, the
number of iterations is four, and each iteration consumes 37
cycles (1 for configuration + 9 for weight distribution + 27
for multicasting input activations) with 8x chubby distribu-
tion tree. Therefore, Maeri requires 143 cycles to process
the example convolutional layer, which reduces 9% of total
latency compared to the example systolic array presented
in Figure 17 (a).
In summary, Maeri provides 9% better throughput and

65% less SRAM reads in the above example. Extending the
same analysis to 256x256 systolic array (TPU [23] specifica-
tions) vs Maeri with 256x256 multipliers on VGG16, we ob-
serveMAERI issues 6.3x lessmemory reads. Furthermore, the
improvements can be more significant in irregular dataflows
such as sparse and inter-layer fusion. However, the better
performance and energy efficiency from less SRAM reads of
Maeri comes at an area cost, as Figure 11 shows.

7 Related Works

In past five years, hardware support to accelerate DNN ap-
plications has been one of the most active research topics
in computer architecture. The most related works to ours
are related to supporting flexible dataflows and NoCs inside
accelerators. In addition, we also discuss other related work
across DNN accelerator design.

DNNaccelerators forflexible dataflows: FlexFlow [34]
and DNA [18] are two recent DNN ASIC proposals with sim-
ilar motivation as this work. FlexFlow demonstrates a design
that provides feature-map, neuron, and synapse-level paral-
lelism, by different mapping strategies across PE rows and
columns. DNA leverages Weight, Input, and Output Reuse
within the same fabric. However, both FlexFlow and DNA’s
flexible dataflows are restricted within a layer, not across
layers. Moreover, both FlexFlow and DNA are restricted to
CNNs and cannot run LSTMs but Maeri can.
NoCs for DNN accelerators: Most of NoC studies for

DNNs [40–43] have proposed meshes due to their flexibility
to support all-to-all communication. Diannao [3] and Shidi-
annao [44] relied on mesh-based interconnects for data trans-
fer. However, meshes add extremely high area and power
overheads as our work and others [33] have shown. Dadi-
annao [4] employed fat tree for scatter and gather and 3D
mesh via hyperTransport 2.0 to distribute data among nodes.
Eyeriss [6] uses separate buses for its scatters and gathers.

a3 b3 c3 d3 e3

j3

o3

t3

y3

a2 b2 c2 d2 e2

j2

o2

t2

y2

a1 b1 c1 d1 e1

f1 g1 h1 i1 j1

k1 l1 m1 n1 o1

p1 q1 r1 s1 t1

u1 v1 w1 x1 y1

a1b1m3 f1g1… c1

A1
B1
C1
D1

I3…

E1

0 1 2 7

8 9 10 15

16 17 18 23

56 57 58 63

8 cols

8 rows

A1
B1
C1
D1

I3…

E1

A1
B1
C1
D1

I3…

E1 A1
B1

I3…

b1c1n3 g1h1… d1

c1d1o3 h1i1… e1

l1x1 m1…

Input Activation

A3 B3

D3 E3

C3

F3

G3 H3 I3

A2 B2

D2 E2

C2

F2

G2 H2 I2

A1 B1

D1 E1

C1

F1

G1 H1 I1

A3 B3

D3 E3

C3

F3

G3 H3 I3

A2 B2

D2 E2

C2

F2

G2 H2 I2

A1 B1

D1 E1

C1

F1

G1 H1 I1

A3 B3

D3 E3

C3

F3

G3 H3 I3

A2 B2

D2 E2

C2

F2

G2 H2 I2

A1 B1

D1 E1

C1

F1

G1 H1 I1

A3 B3

D3 E3

C3

F3

G3 H3 I3

A2 B2

D2 E2

C2

F2

G2 H2 I2

A1 B1

D1 E1

C1

F1

G1 H1 I1

…

Weight Filters

A1

x

C1

x

B1

x

D1

x

H3

x

I3

x x x

+ + + +

+ + +

+

…

…

…

a1 b1

…

…

…

…

52 53 62 63

64
Multipliers

6 levels

6 levels

c1 d1 l3 m3

To PB (SRAM)

From PB (SRAM)

(a) Systolic Array

I1

m1

3210

(b) MAERI

…

…
I3

x

+

m3

26

… …

…

…

…
……

… …

From SRAM

From
SRAM

Figure 17. A mapping example of a convolution layer with eight 3x3x3 filters and 5x5x3 input activation over (a) a systolic array with 64
PEs and (b) MAERI with 64 multiplier switches.

CNN accelerators: Convolution Engine [45] explored
the trade-off between flexibility and efficiency in accelerator
domainwith an example of convolution accelerator for image
processing domain. Diannao [3], DaDiannao [15], ShiDian-
nao [44] are early spatial DNN accelerators. A recent work in
FPGA [21] proposed constraint aware optimization tool for
FPGA based accelerators. The design used simple adder trees
within their computation engine, which can benefit from
our ART. Eyeriss [25] analyzed data flow patterns in existing
CNN accelerators and proposed a new data flow pattern for
CNN acceleration called row stationary, which performs bet-
ter than other data flow patterns in terms of throughput and
energy efficiency. Maeri’s VN mapping, without folding, es-
sentially implemented row stationary across the multipliers,
and output stationary over the ART to get the best of both
dataflows. These works are all complementary to Maeri,
since our configurable distribution and reduction trees can
enable them to support more dataflows.

Cross-layer CNN Accelerators: A lot of recent works
have performed design-space exploration of DNN accelera-
tors, such as finding a better way to map data on to hardware
or the best configuration of DNN accelerators, using novel
simulation infrastructures [17, 46–48]. Fused-layer CNN [16]
and others [35, 37, 49] have explored CNN architectures op-
timized for cross-layer optimizations over FPGAs. FPGAs
provide immense flexibility in tuning the RTL for the right
dataflow pattern and filter size(s) for mapping. Maeri aims
to provide an ASIC substrate with similar flexibility.

Sparse CNN Accelerators: SCNN [8] is a recent acceler-
ator for sparse CNNs, that leverages sparsity in activations
and weights. Cnvlutin [19] compresses activation values
based on the ReLU operator. Cambricon-X uses weight spar-
sity to keep only non-zero weights in its buffers. EIE [7] uses
a compressed representation of weights and activations, de-
livering only non-zero operands to multipliers, for FC layers.

Maeri’s aim is not to identify sparsity or compress data, but
rather to construct arbitrary sized VNs given sparse data.

RNN accelerators: Although the algorithm of RNNs has
been discussed for more than 20 years [27, 50–52], hardware
design of RNNs was not as active as that of CNNs. In the last
two years, hardware acceleration of LSTMs on FPGAs [53–
57] has been explored. Maeda et al. suggested new learning
algorithm ofHopfield RNN [58]which has been implemented
on FPGA [59, 60]. An ASIC implementation for accelerating
the control of RNN networks was recently demonstrated [61].
DNPU [62] implements CNN and RNN-LSTM in a single chip
like Maeri but requires independent compute units for CNN
and RNN while Maeri computes both CNN and RNN with
the same substrate. Google’s TPU [23] can also run CNNs and
LSTMs together though it uses a Systolic Array which cannot
provide the same level of configurability as our distribution
and reduction networks.

8 Conclusion

In this paper we describe and evaluate Maeri, a fabric for
mapping arbitrary dataflows that arise in DNNs due to its
topology or mapping. Our approach is to augment multipli-
ers and adders with tiny switches, and interconnect them
via a novel reconfigurable interconnect that supports ar-
bitrary sized neurons. We demonstrate how Maeri is not
only capable of running CONV, LSTM, POOL and FC layers,
but also supports cross-layer mapping and sparsity. Maeri’s
NoCs add minimal overheads over NoCs in state-of-the-art
CNN accelerators while providing tremendous flexibility. We
believe that Maeri is quite robust to supporting new opti-
mizations in DNNs as it can construct arbitrary sized MAC
engines very efficiently. This work also opens up exciting
opportunities in compiler designs that can take arbitrary
DNNs and map them efficiently over a Maeri-like fabric.

References

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao,
C. Gong, A. Hannun, T. Han, Vaino, L. Johannes, B. Jiang, C. Ju, B. Jun,
P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang, A. Ng,
S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V. Rao,
S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang,
L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang,
S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan,
and Z. Zhu, “Deep speech 2: End-to-end speech recognition in english
and mandarin,” arXiv preprint arXiv:1512.02595, 2015.

[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-
annao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ASPLOS, pp. 269–284, 2014.

[4] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “Dadiannao: A machine-learning supercom-
puter,” in MICRO, pp. 609–622, 2014.

[5] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ISCA, 2015.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
2017.

[7] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram,M. A. Horowitz, andW. J. Dally,
“Eie: efficient inference engine on compressed deep neural network,”
in ISCA, 2016.

[8] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An ac-
celerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 27–40, ACM, 2017.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, pp. 1097–1105,
2012.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibian-
sky, Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta, A. Ng, and
M. Shoeybi, “Deep voice: Real-time neural text-to-speech,” arXiv
preprint arXiv:1702.07825, 2017.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-
annao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ACM Sigplan Notices, vol. 49, pp. 269–284, ACM,
2014.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “Dadiannao: A machine-learning supercom-
puter,” in Proceedings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp. 609–622, IEEE Computer Society,
2014.

[16] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[17] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain: A deep
learning accelerator that tames the diversity of cnns through adaptive
data-level parallelization,” in DAC, pp. 1–6, 2016.

[18] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S.Wei, “Deep convolutional
neural network architecturewith reconfigurable computation patterns,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[19] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ISCA, pp. 1–13, 2016.

[20] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
MICRO, 2016.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in FPGA, pp. 161–170, 2015.

[22] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,”
in HPCA, 2017.

[23] N. P. Jouppi, , C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tut-
tle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,
“In-datacenter performance analysis of a tensor processing unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
genet large scale visual recognition challenge,” International Journal
of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[25] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ISCA,
pp. 367–379, 2016.

[26] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in International Conference on Artificial Neural Networks,
pp. 281–290, Springer, 2014.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[29] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints,
vol. abs/1605.02688, May 2016.

[30] M. Abadi, A. Agarwal, and P. Barham, “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[31] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[32] Y.Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and
dataflow in fpga acceleration of deep convolutional neural networks,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 45–54, ACM, 2017.

[33] H. Kwon, A. Samajdar, and T. Krishna, “Rethinking nocs for spatial
neural network accelerators,” in NOCS, 2017.

[34] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,”
in High Performance Computer Architecture (HPCA), 2017 IEEE Interna-
tional Symposium on, pp. 553–564, IEEE, 2017.

[35] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 161–170, ACM, 2015.

[36] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn ac-
celerators,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1–12, IEEE, 2016.

[37] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. K. Kim,
A. Mishra, and H. Esmaeilzadeh, “Dnnweaver: From high-level deep
network models to fpga acceleration,” in the Workshop on Cognitive
Architectures, 2016.

[38] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, J. Wanderer, U. Holzle, S. Stuart, and A. Vahdat, “Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network,” ACM SIGCOMM Computer Communication Re-
view, vol. 45, no. 4, pp. 183–197, 2015.

[39] R. Nikhil, “Bluespec system verilog: efficient, correct rtl from high
level specifications,” in MEMOCODE, pp. 69–70, IEEE, 2004.

[40] D. Vainbrand et al., “Network-on-chip architectures for neural net-
works,” in NOCS, pp. 135–144, 2010.

[41] J. Harkin et al., “Reconfigurable platforms and the challenges for
large-scale implementations of spiking neural networks,” in Field Pro-
grammable Logic and Applications, 2008. FPL 2008. International Con-
ference on, pp. 483–486, IEEE, 2008.

[42] T. Theocharides et al., “A generic reconfigurable neural network archi-
tecture implemented as a network on chip,” in SOC, 2004.

[43] R. Emery et al., “Connection-centric network for spiking neural net-
works,” in NOCS, pp. 144–152, 2009.

[44] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, pp. 92–
104, ACM, 2015.

[45] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, “Convolution engine: balancing efficiency & flexibility
in specialized computing,” in ISCA, pp. 24–35, 2013.

[46] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“Neutrams: Neural network transformation and co-design under neu-
romorphic hardware constraints,” in MICRO, pp. 1–13, 2016.

[47] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in ISCA, pp. 97–108, 2014.

[48] M. Zhu, L. Liu, C.Wang, and Y. Xie, “Cnnlab: a novel parallel framework

for neural networks using gpu and fpga-a practical study with trade-off
analysis,” arXiv preprint arXiv:1606.06234, 2016.

[49] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator effi-
ciency through resource partitioning,” in 44th International Symposium
on Computer Architecture (ISCA), 2017.

[50] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,
pp. 179–211, 1990.

[51] M. I. Jordan, “Serial order: A parallel distributed processing approach,”
Advances in psychology, vol. 121, pp. 471–495, 1997.

[52] C. Goller and A. Kuchler, “Learning task-dependent distributed rep-
resentations by backpropagation through structure,” in IEEE Neural
Networks, vol. 1, pp. 347–352, 1996.

[53] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-
ral networks hardware implementation on fpga,” arXiv preprint
arXiv:1511.05552, 2015.

[54] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for
long short-term memory recurrent neural networks,” in ASP-DAC,
pp. 629–634, 2017.

[55] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “Fpga acceleration of
recurrent neural network based language model,” in FCCM, pp. 111–
118, 2015.

[56] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, “Fpga-based
low-power speech recognition with recurrent neural networks,” in
SiPS, pp. 230–235, 2016.

[57] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, “Ese: Efficient speech recognition
engine with sparse lstm on fpga,” in FPGA, pp. 75–84, 2017.

[58] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[59] Y. Maeda and M. Wakamura, “Simultaneous perturbation learning
rule for recurrent neural networks and its fpga implementation,” IEEE
Transactions on Neural Networks, vol. 16, no. 6, pp. 1664–1672, 2005.

[60] R. Tavcar, J. Dedic, D. Bokal, and A. Zemva, “Transforming the lstm
training algorithm for efficient fpga-based adaptive control of nonlin-
ear dynamic systems,” Informacije Midem-Journal of Microelectronics
Electronic Components and Materials, vol. 43, no. 2, pp. 131–138, 2013.

[61] J. Kung, D. Kim, and S. Mukhopadhyay, “Dynamic approximation
with feedback control for energy-efficient recurrent neural network
hardware,” in ISLPED, pp. 168–173, 2016.

[62] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 dnpu: An 8.1 tops/w reconfig-
urable cnn-rnn processor for general-purpose deep neural networks,”
in ISSCC, pp. 240–241, 2017.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Deep Neural Networks
	2.2 Dataflows in a DNN
	2.3 Challenges with supporting flexible dataflows
	2.4 Taxonomy of communication flows

	3 Maeri Building Blocks
	3.1 Data Distribution Network
	3.2 Data Reduction and Collection Network: ART

	4 Mapping Dataflows over Maeri
	4.1 Virtual Neuron (VN) Construction over ART
	4.2 Mapping a CONV Layer
	4.3 Mapping a RNN/LSTM Layer
	4.4 Mapping a POOL Layer
	4.5 Mapping a FC Layer
	4.6 Mapping Cross-Layers
	4.7 Mapping Sparse Networks
	4.8 Optimization: Folding over Rows

	5 Implementation
	6 Evaluations
	6.1 Performance with regular (dense) dataflow.
	6.2 Performance with irregular dataflow.
	6.3 Maeri Deep Dive

	7 Related Works
	8 Conclusion
	References

