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ABSTRACT

The microarchitecture of DNN inference engines is an active re-

search topic in the computer architecture community because DNN

accelerators are needed to maximize performance/watt for mass

deployment across phones, cars, and so on. This has led to a flurry

of ASIC DNN accelerator proposals in academia over recent years.

Industry is also investing heavily so every major company develop-

ing its own neural network accelerator, which resulted in myriad

of dataflow patterns. We claim that dataflows essentially lead to

different kinds of data movement within an accelerator. Thus, to

support arbitrary dataflows in accelerators, we propose to make

interconnects programmable. We achieve it by augmenting all com-

pute elements (multipliers and adders) and on-chip buffers with tiny

switches, which can be configured at compile time or runtime. Our

design, MAERI, connects these switches via a new configurable and

non-blocking tree topology to provide not only programmability

but also high throughput.
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1 INTRODUCTION

The microarchitecture of deep neural network (DNN) inference

engines is an active research area in computer architecture commu-

nity. GPUs provide are efficient training platforms with their mass

parallelism, multi-core CPUs provide platforms for algorithmic ex-

ploration, and FPGAs provide power-efficient and configurable plat-

forms for algorithmic exploration and acceleration. However, for

mass deployment across various domains (phones, cars, etc.), DNN

accelerators are needed to maximize performance/watt. This has

led to a flurry of ASIC proposals for DNN accelerators over recent

years [3–7, 11]. Industry is also heavily investing, with every major

company developing its own spatial DNN accelerator [1, 8, 9]. One

of the practical and open challenges for DNN accelerator designs is

programmability because DNNs can be partitioned in myriad ways
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(within [4] and across layers [2]) to exploit data reuse, which leads

to different dataflow patterns within accelerators.

The DNN Data Flow Graph (DFG) is fundamentally a multi-

dimensional multiply-accumulate calculation, as Figure 1 demon-

strates. Each dataflow is essentially some kind of transformation of

this loop [10, 12], which contains different optimization potentials

depending on neural network layers. Unfortunately, most of DNN

accelerators cannot exploit potentials of each dataflow as they inter-

nally support fixed dataflow patterns. This is because they perform

a careful co-design of the PEs and the network-on-chip (NoC) (e.g.,

TPU [9]). Because of such inflexibility, mapping different dataflows

on an accelerator can lead to compute resource underutilization.

Therefore, each new optimization has required a new accelerator de-

sign for that optimization [2, 7, 11, 13], which makes the hardening

of accelerator designs challenging and uneconomical.

Our insight in this work is that different dataflows essentially

lead to different data movement patterns within accelerators. Thus,

to support arbitrary dataflows in spatial accelerators, we propose

MAERI (Multiply-Accumulate Engine with Reconfigurable Inter-

connect)
1
, a DNN accelerator with programmable interconnects.

MAERI augments all compute elements (multipliers and adders)

and on-chip buffers with tiny switches, which can be programmed/-

configured at compile- or run-time to support myriad dataflow

scenarios. We connect these switches via a new configurable and

non-blocking tree topology.

2 MAERI BUILDING BLOCKS

Figure 1 shows MAERI’s building blocks:

• Prefetch buffer (PB): serves as a cache of DRAM, which stores

input activations, weights, intermediate partial sums that could

not be fully accumulated, and output activations.

• Activation Units: Lookup Tables are used to implement dif-

ferent activation functions (such as ReLU).

• Distribution Tree: A fat-tree is used to distribute activations

and weights from the PB to multipliers.

• Simple Switch (SS): Each node in the distribution tree is a

simple 2:1 switch to unicast/multicast inputs/weights.

• Augmented Reduction Tree (ART): A fat-tree augmented

with forwarding links is used to reduce partial sums and send

outputs to activation units. An ART with N leaves can support

1 to N/2 simultaneous reductions with provable non-blocking.

• Adder Switch (AS): Each node in ART is an adder augmented

with a switch to allow data forwarding to peers or to parents.

1
A version of this paper will appear in Proc. of the 23rd ACM Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Mar 2018.
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Figure 1: An overview of Maeri. Maeri is designed to efficiently handle CONV, LSTM, POOL and FC layers. It can also handle cross-layer

and sparse mappings. We implement this flexibility using configurable distribution and reduction trees within the fabric.
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Figure 2: Programming the switches tomap a CONV layer inMaeri. W, X, and O represent weights, input activations, and output activations.

• Multiplier Switch (MS): Each multiplier is augmented with

a switch to allow data forwarding to neighboring multipliers,

and data reception from the PB or neighboring MSes.

The distribution and reduction trees provide full non-blocking

bandwidth to the compute blocks, but can be pruned to reduce the

bandwidth if required to reduce area and power.

3 MAPPING DATAFLOWS OVER MAERI

The entire accelerator is controlled by a programmable controller

which manages reconfiguration of all three sets of switches (MS, AS,

and SS) for mapping the target dataflow. This is done by creating

Virtual Neurons (VN) over the multiplers and adders. The flexibility

of the interconnects allows us to create VNs of any size, which

provides the ability to map arbitrary dataflows simultaneously.

Figure 2 shows a walk-through example of mapping a convolu-

tional layer. Similarly, recurrent, max-pool, fully-connected, sparse

and so on layers can be mapped.

4 EVALUATIONS AND CONCLUSIONS

Maeri is a spatial accelerator for mapping arbitrary dataflows that

arise in DNNs due to its topology or mappings by using tiny pro-

grammable switches next to each on-chip compute and memory en-

gine. It provides 130-283% better utilization across multiple dataflow

mappings over baselines with rigid NoC fabrics. MAERI’s intercon-

nects are 10-100× smaller than conventional NoCs.
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