
MAERI: Enabling Flexible Dataflow Mapping over DNN
Accelerators via Programmable Interconnects

Hyoukjun Kwon

Georgia Institute of Technology

Atlanta, Georgia

hyoukjun@gatech.edu

Ananda Samajdar

Georgia Institute of Technology

Atlanta, Georgia

anandsamajdar@gatech.edu

Tushar Krishna

Georgia Institute of Technology

Atlanta, Georgia

tushar@ece.gatech.edu

ABSTRACT

The microarchitecture of DNN inference engines is an active re-

search topic in the computer architecture community because DNN

accelerators are needed to maximize performance/watt for mass

deployment across phones, cars, and so on. This has led to a flurry

of ASIC DNN accelerator proposals in academia over recent years.

Industry is also investing heavily so every major company develop-

ing its own neural network accelerator, which resulted in myriad

of dataflow patterns. We claim that dataflows essentially lead to

different kinds of data movement within an accelerator. Thus, to

support arbitrary dataflows in accelerators, we propose to make

interconnects programmable. We achieve it by augmenting all com-

pute elements (multipliers and adders) and on-chip buffers with tiny

switches, which can be configured at compile time or runtime. Our

design, MAERI, connects these switches via a new configurable and

non-blocking tree topology to provide not only programmability

but also high throughput.

ACM Reference Format:

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018.

MAERI: Enabling Flexible Dataflow Mapping over DNN Acceler-

ators via Programmable Interconnects. In Proceedings of SysML
’18. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

The microarchitecture of deep neural network (DNN) inference

engines is an active research area in computer architecture commu-

nity. GPUs provide are efficient training platforms with their mass

parallelism, multi-core CPUs provide platforms for algorithmic ex-

ploration, and FPGAs provide power-efficient and configurable plat-

forms for algorithmic exploration and acceleration. However, for

mass deployment across various domains (phones, cars, etc.), DNN

accelerators are needed to maximize performance/watt. This has

led to a flurry of ASIC proposals for DNN accelerators over recent

years [3–7, 11]. Industry is also heavily investing, with every major

company developing its own spatial DNN accelerator [1, 8, 9]. One

of the practical and open challenges for DNN accelerator designs is

programmability because DNNs can be partitioned in myriad ways

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SysML ’18, Feb 15–16, 2018, Stanford, CA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

(within [4] and across layers [2]) to exploit data reuse, which leads

to different dataflow patterns within accelerators.

The DNN Data Flow Graph (DFG) is fundamentally a multi-

dimensional multiply-accumulate calculation, as Figure 1 demon-

strates. Each dataflow is essentially some kind of transformation of

this loop [10, 12], which contains different optimization potentials

depending on neural network layers. Unfortunately, most of DNN

accelerators cannot exploit potentials of each dataflow as they inter-

nally support fixed dataflow patterns. This is because they perform

a careful co-design of the PEs and the network-on-chip (NoC) (e.g.,

TPU [9]). Because of such inflexibility, mapping different dataflows

on an accelerator can lead to compute resource underutilization.

Therefore, each new optimization has required a new accelerator de-

sign for that optimization [2, 7, 11, 13], which makes the hardening

of accelerator designs challenging and uneconomical.

Our insight in this work is that different dataflows essentially

lead to different data movement patterns within accelerators. Thus,

to support arbitrary dataflows in spatial accelerators, we propose

MAERI (Multiply-Accumulate Engine with Reconfigurable Inter-

connect)
1
, a DNN accelerator with programmable interconnects.

MAERI augments all compute elements (multipliers and adders)

and on-chip buffers with tiny switches, which can be programmed/-

configured at compile- or run-time to support myriad dataflow

scenarios. We connect these switches via a new configurable and

non-blocking tree topology.

2 MAERI BUILDING BLOCKS

Figure 1 shows MAERI’s building blocks:

• Prefetch buffer (PB): serves as a cache of DRAM, which stores

input activations, weights, intermediate partial sums that could

not be fully accumulated, and output activations.

• Activation Units: Lookup Tables are used to implement dif-

ferent activation functions (such as ReLU).

• Distribution Tree: A fat-tree is used to distribute activations

and weights from the PB to multipliers.

• Simple Switch (SS): Each node in the distribution tree is a

simple 2:1 switch to unicast/multicast inputs/weights.

• Augmented Reduction Tree (ART): A fat-tree augmented

with forwarding links is used to reduce partial sums and send

outputs to activation units. An ART with N leaves can support

1 to N/2 simultaneous reductions with provable non-blocking.

• Adder Switch (AS): Each node in ART is an adder augmented

with a switch to allow data forwarding to peers or to parents.

1
A version of this paper will appear in Proc. of the 23rd ACM Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Mar 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML ’18, Feb 15–16, 2018, Stanford, CA Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

++++++++

++++

++

+

x x x x x x x x x x x x x x x x

Prefetch
Buffer

Activation Units
Accelerator Controller

From/To DRAM

Layer Topology

D
is

tr
ib

ut
io

n/
R

ed
uc

tio
n

N
et

w
or

k
C

on
tr

ol

Weights / Input Activations

Activation Control

+ Adder Switch
Multiplier Switch

Local Buffer

MAERI Blocks

Local Forwarding
Data link

1:2 Switch

x

Map

Full Convolution Loop

∑ ∑ …∑ W *
I

Loop Ordering

Loop Blocking/Tiling

∑ ∑ …∑ W
* I0

Y

∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I
 …

+ ∑ ∑ …∑ W * I

0

10

10

20

Y-10

Y

∑ ∑ …∑ W *
I

Dataflow Optimizations

for(ki=0;	ki<K;	ki++)	{	//	C-dimension	Filter;	Loop_K

for(ci=0;	ci<C;	ci++)	{	//	Input	Channel;	Loop_C

for(yi=0;	yi<Y;	yi++)	{		//	Image	row;	Loop_Y

for(xi=0;	xi<X;	xi++)	{		//	Image	col;	Loop_X

for(ri=0;	ri<R;	ri++)	{		//	Weight	filter	row;	Loop_R

for(si=0;	si<S;	si++)	{		//	Weight	filter	col;	Loop_S

O[ki][xi][yi]	+=	W[ki][ci][ri][si]	*	I[ci][yi][xi]}}}}}}}

Loop Unrolling

∑ …∑ ∑ W * I
0

S

0

R

∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

+ ∑ ∑ …∑ W * I

0

R

…
0

R

0

R

Loop trans-
formations

I
N
P
U
T

C
O
N
V

C
O
N
V

P
O
O
L

C
O
N
V

C
O
N
V

P
O
O
L

C
O
N
V

C
O
N
V

P
O
O
L

C
O
N
V

C
O
N
V

C
O
N
V

P
O
O
L

C
O
N
V

C
O
N
V

C
O
N
V

P
O
O
L

F
C

F
C

F
C

VGG-16

Augmented
Reduction
Tree (ART)

Distribution Tree

MAERI

Figure 1: An overview of Maeri. Maeri is designed to efficiently handle CONV, LSTM, POOL and FC layers. It can also handle cross-layer

and sparse mappings. We implement this flexibility using configurable distribution and reduction trees within the fabric.

VN 2VN 0 VN 1

Virtual Neuron Construction

++++++++

++++

++

+

To/From Prefetch Buffer

Weight and Input Activation Distribution

VN 2VN 0 VN 1

Output Activation Calculation

++++++++

++++

++

+

W00 W01 W10 W11

X01 X11

Mult. valA

Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11

X11 X21

W00 W01 W10 W11

X21 X31

X12 X22 X32

O00 O10 O20

X02 X12 X22

VN 2VN 0 VN 1

++++++++

++++

++

+

W00 W01 W10 W11

X02 X12

Mult. valA
Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11

X12 X22

W00 W01 W10 W11

X22 X32

X13 X23 X33

O01 O11 O21

X03 X13 X23

X01 X02 X11 X12 X11 X12 X21 X22 X21 X22 X31 X32 X02 X03 X12 X13 X12 X13 X22 X23 X22 X23 X32 X33

W00 W01
W10 W11

=X

X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33

Input ActivationFilter Output Activation

CONV

O00 O01 O02 O03
O10 O11 O12 O13
O20 O21 O22 O23
O30 O31 O32 O33

Slide

Oij = W00 X Xij + W01 X Xi(j+1)

+ W10 X X(i+1)j + W11 X X(i+1)(j+1)

++++++++

++++

++

+

To/From Prefetch Buffer
Instruction Stream for
Programming Switches
to create Virtual Neurons

VN 2VN 0 VN 1

++++++++

++++

++

+
W00 W01 W10 W11 Mult. valA

Mult. valB

To/From Prefetch Buffer

W00 W01 W10 W11 W00 W01 W10 W11

X00 X01 X10 X11 X10 X11 X20 X21 X20 X21 X30 X31

Programming of Switches1

23

4

4a 4b

0 Target Layer

Figure 2: Programming the switches tomap a CONV layer inMaeri. W, X, and O represent weights, input activations, and output activations.

• Multiplier Switch (MS): Each multiplier is augmented with

a switch to allow data forwarding to neighboring multipliers,

and data reception from the PB or neighboring MSes.

The distribution and reduction trees provide full non-blocking

bandwidth to the compute blocks, but can be pruned to reduce the

bandwidth if required to reduce area and power.

3 MAPPING DATAFLOWS OVER MAERI

The entire accelerator is controlled by a programmable controller

which manages reconfiguration of all three sets of switches (MS, AS,

and SS) for mapping the target dataflow. This is done by creating

Virtual Neurons (VN) over the multiplers and adders. The flexibility

of the interconnects allows us to create VNs of any size, which

provides the ability to map arbitrary dataflows simultaneously.

Figure 2 shows a walk-through example of mapping a convolu-

tional layer. Similarly, recurrent, max-pool, fully-connected, sparse

and so on layers can be mapped.

4 EVALUATIONS AND CONCLUSIONS

Maeri is a spatial accelerator for mapping arbitrary dataflows that

arise in DNNs due to its topology or mappings by using tiny pro-

grammable switches next to each on-chip compute and memory en-

gine. It provides 130-283% better utilization across multiple dataflow

mappings over baselines with rigid NoC fabrics. MAERI’s intercon-

nects are 10-100× smaller than conventional NoCs.

MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Programmable InterconnectsSysML ’18, Feb 15–16, 2018, Stanford, CA

REFERENCES

[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,

Brian Taba, Michael Beakes, Bernand Brezzo, Jente B. Kuang, Rajit Manohar,

William P. Risk, Brayan Jackson, and Dharmendra S. Modha, Truenorth: Design
and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,
TCADICS 34 (2015), no. 10, 1537–1557.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder, Fused-layer CNN
accelerators, 49th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), 2016.

[3] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam, Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning, ASPLOS, 2014, pp. 269–284.

[4] Yu-Hsin Chen, Joel Emer, and Vivienne Sze, Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks, ISCA, 2016.

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, JiaWang, Ling Li, Tian-

shi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam, Dadiannao: A machine-
learning supercomputer, MICRO, 2014, pp. 609–622.

[6] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaob-

ing Feng, Yunji Chen, and Olivier Temam, Shidiannao: Shifting vision processing
closer to the sensor, ISCA, 2015.

[7] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally, Eie: efficient inference engine on compressed deep neural
network, ISCA, 2016.

[8] Intel, Intel’s new self-learning chip promises to accelerate
artificial intelligence, https://newsroom.intel.com/editorials/

intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/.

[9] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.,

In-datacenter performance analysis of a tensor processing unit, Proceedings of the
44th Annual International Symposium on Computer Architecture, ACM, 2017,

pp. 1–12.

[10] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li,

Flexflow: A flexible dataflow accelerator architecture for convolutional neural net-
works, HPCA, 2017.

[11] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and

William J Dally, Scnn: An accelerator for compressed-sparse convolutional neural
networks, Proceedings of the 44th Annual International Symposium on Computer

Architecture, ACM, 2017, pp. 27–40.

[12] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong,

Optimizing fpga-based accelerator design for deep convolutional neural networks,
FPGA, 2015, pp. 161–170.

[13] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,

Tianshi Chen, and Yunji Chen, Cambricon-x: An accelerator for sparse neural
networks, MICRO, 2016.

https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/
https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/

	Abstract
	1 Introduction
	2 MAERI Building Blocks
	3 Mapping Dataflows over MAERI
	4 Evaluations and Conclusions
	References

