
FastTrack: Leveraging Heterogeneous FPGA Wires to Design Low-cost

High-performance Soft NoCs

Nachiket Kapre

University of Waterloo

Ontario, Canada

nachiket@uwaterloo.ca

Tushar Krishna

Georgia Institute of Technology

Atlanta, GA, USA

tushar@ece.gatech.edu

Abstract—

Networks-on-Chip (NoCs) implemented on FPGAs have to
be designed differently from ASICs to fully exploit the unique
architectural features and properties of the FPGA fabric. The
FPGA-friendly bufferless, deflection routed Hoplite NoC is
almost an order of magnitude smaller and runs at a faster op-
erating frequency than competing classic buffered FPGA NoCs.
It is able achieve this by sacrificing NoC link utilization that
suffers due to the cost of packet deflections and associated high
latency traversals. In this paper, we address these shortcomings
by developing FastTrack, which is an FPGA-optimized, high-
radix NoC that exploits the segmented interconnect structure
of modern FPGAs. We adapt the NoC organization to use
express bypass links in the NoC to skip multiple router
stages in a single cycle. Our FastTrack design can be tuned
to use different express link lengths for performance, and
supports depopulation strategies for controlling the balance
between FPGA LUT and wiring cost. For the Xilinx Virtex-
7 485T FPGA, an 8×8 FastTrack NoC is 1.7–2.5× larger
than a base Hoplite NoC, but operates at almost the same
clock frequency. FastTrack delivers throughput and latency
improvements across a range of statistical workloads (2.5×),
and traces extracted from FPGA accelerator case studies
such as Sparse Matrix-Vector Multiplication (2.5×), Graph
Analytics (2.8×), Token LU Factorization Dataflow (1.4×)
and Multi-processor overlay applications (2×). FastTrack also
shows energy efficiency improvements by factors of up to 2.2×
over baseline Hoplite due to higher sustained rates and high
speed operation of express links made possible by fast FPGA
interconnect.

Keywords-Network-on-Chip, FPGA, Overlay networks

I. INTRODUCTION

FPGAs are fast becoming ubiquitous computation and

acceleration platforms, complementing CPUs and GPUs

across systems today. In addition to their traditional role

for fast prototyping of designs, modern FPGAs find wide

use as DNN accelerators [1–3], Graph accelerators [4],

switch fabrics inside HPC systems [5], network function

virtualization [6], and cloud service accelerators [7, 8]. To

service these various platforms, FPGA boards today house

hard IPs such as ARM cores, DSPs, and I/O controllers

(PCIe, DRAM), in addition to the reconfigurable substrate.

Applications or designs that are mapped over these FPGAs

comprise of multiple soft IPs, interacting with each other

and the hard IPs in the system. Examples of such soft

IPs include processors [9, 10], domain-specific processing

●
0

1

2

3

0 1000 2000 3000

Cost per Switch max(LUTs,FFs)

P
e

a
k
 S

/W
 B

a
n

d
w

id
th

 (
p

a
c
k
e

ts
/n

s
)

● BLESS

CONNECT

FastTrack

Hoplite

OpenSMART

Split−Merge

Figure 1: Area-Bandwidth Tradeoffs in implementing

NoCs on FPGAs.

elements [1–3], system-level endpoints, and others. Just

like in MPSoCs and multi-core CPUs, it is imperative to

architect the right interconnection between these various

IPs, to achieve high-performance. In fact, the latency and

bandwidth of these FPGA interconnects is highly critical

to overall performance since the IPs mapped on FPGAs

cannot implement expensive latency-hiding techniques such

as multi-threading and out-of-order processing like modern

CPU cores do.

Most FPGA designs use point-to-point connections over

the configurable fabric. However, these do not scale beyond

a certain IP count as they start adding heavy routing pressure

on the FPGA wires. It has also been demonstrated [11]

that the communication bandwidth of system-level interfaces

such as PCIe, DRAM, and Ethernet is too high to support

using configured, point-to-point, interconnect alone. More-

over, analyzing all the connectivity requirements upfront

when designing the application can become challenging or

even infeasible for a FPGA developer. For all these reasons,

switched networks-on-chip (NoCs) have started to emerge

as a connectivity paradigm for FPGAs [12–14]. These NoCs

are soft NoCs and can be generated as a soft IP to connect

the various application modules on the FPGA fabric, using

classic NoC topologies and routing mechanisms. Packet-

switching allows the system to dynamically determine the

connection requirements of the application at runtime while

spending a user-determined amount of resources on the NoC

sw sw sw sw

Figure 2: A row of the NoC (4×1 slice) showing express

physical channels (in red) in conjunction with regular NoC

links (in black). The express link allows packets to skip a

router. Link length determined by matching FPGA

technology parameters to application requirements.

infrastructure. Vendors like Altera have in fact started to

provide tools such as Qys [15] to generate application-

specific NoCs built around industry-standard interfaces such

as AXI simplifying system composition.

Engineering soft NoCs for FPGAs is a different design

problem from designing NoCs for multi-core CPUs, or

ASICs, since the trade-offs are quite different. Figure 1

summarizes the state-of-the-art FPGA implementation cost

versus bandwidth trends observed in contemporary NoC

routers. Buffered ASIC NoCs (such as OpenSMART [16])

can provide high throughput (packets/cycle) but come at

a prohibitively high area cost and lower operating fre-

quency when mapped on a FPGA, thereby reducing switch

bandwidth (packets/ns). Prior studies [12] have shown that

mapping an ASIC-optimized NoC RTL directly on a FPGA

is quite sub-optimal, primarily because FPGAs are wire-rich

but LUT area-limited. There has been a steady stream of

research on trying to strip down ASIC NoCs to make them

more FPGA-friendly. Split-Merge [13] and CONNECT [12]

were early efforts in this direction, and reduced LUT costs

by 40-50% over state-of-the-art ASIC NoCs. However, these

designs still require in excess of a thousand LUTs per router,

which not only consumes precious FPGA area and power,

but also adds high delay penalties at each hop. Bufferless

deflection-based NoCs like Hoplite [14] require only 1-2

LUT per bit at every router, thereby reducing area, power,

and per-hop latency by orders of magnitude. However, they

result in poor wiring utilization due to wasteful deflections,

and extremely high worst-case routing times. Deflections

cause packets to traverse NoC rings multiple times instead

of waiting patiently in buffers. This challenge become worse

as the size of the NoC scales, especially for FPGA acceler-

ators [4, 17] and Multi-processor overlays that often employ

hundreds of processing elements (PEs) [9, 10].

In this paper, we introduce FastTrack, a NoC architec-

ture that is optimized for both area and wire-efficiency.

FastTrack provides both the flexibility of packet-switching,

and the low-latency enabled by dedicated connections. Our

key insight is that not all wires on the FPGA are equal -

FPGA chips have long shipped with segmented interconnect

carrying wires of varying lengths (speeds) to accommo-

date circuit connections with diverse requirements [18].

FastTrack makes strategic use of these interconnects via

express channels in the topology to bypass multiple FPGA

routers and provide a fast path for packets on the NoC.

In Figure 2 we show an example of a 4×1 Hoplite NoC

with a unidirectional torus topology using FastTrack express

links of length 2. Each FastTrack switch now has an extra

input and output port per dimension and extra wires (red) to

allow jumping over multiple router hops. Express channels

based NoCs have traditionally lead to a quadratic increase in

area and power [16, 19, 20]. In FastTrack, we leverage the

FPGA CLB architecture, and provide depopulation strategies

to accommodate the logic that drives the express paths in an

efficient manner.

The key contributions of this paper are as follows:

• Wire speed characterization of the Xilinx Virtex-7 485T

to understand the furthest a packet can traverse on the

chip in a single clock (Section III).

• Design of the FastTrack router microarchitecture, topol-

ogy, and routing policies for efficient FPGA realization

(Section IV).

• A design methodology to tune the LUT and wire cost

of FastTrack in a fine-grained manner to best use FPGA

resources.

• Evaluation of the FastTrack NoC across a range of

statistical and FPGA accelerator workloads from Sparse

Matrix-Vector Multiplication, Graph Analytics, Token

LU Factorization Dataflow, along with Multi-Processor

overlays (Section VI).

The rest of the paper is organized as follows: section II

presents background on challenges unique to FPGA NoCs

and reviews related work. section III performs an analy-

sis of wire delays on the FPGA. section IV presents the

FastTrack microarchitecture and hardware implementation

is presented in section V. section VI presents evaluation

results. section VII highlights FPGA architecture impact in

light of FastTrack. Finally, we conclude in section VIII.

II. BACKGROUND AND MOTIVATION

FPGA overlay NoCs allow FPGA IPs to communicate

with each other using a packetized interface. There is a

growing demand for the use of FPGAs in data-centers for

acceleration [7, 8] and fast switching [5, 6] in highly inter-

connected environments with fast network ports, PCIe links,

DRAM channels, inter-FPGA links and cache-coherent con-

nections to host CPUs. Overlay NoCs allow existing FPGAs

to provide a seamless framework for composing complex

digital designs connected to external and internal interfaces.

In this section, we detail some challenges in designing FPGA

overlay NoCs, and the promise that fast FPGA wires can

offer to address these challenges.

A. Network-on-Chip (NoC)

A NoC is a multi-ported switch that can be used to con-

nect multiple IPs together using shared resources. Designing

a NoC that is low-latency, high-throughput, low-area and

low-power is quite challenging, since it often becomes hard

to optimize on all fronts. We discuss three classes of routers,

and the trade-offs they offer in terms of all of these metrics.

1) Trade-off with Router Microarchitectures:

Buffered Low-Radix Routers.: We typically use four-

five ported routers to build the popular mesh and torus

topologies. These designs provide connectivity between

neighboring routers, and buffer any packets in case of

contention. The latency of packets going through these

routers is linear with the number of routers. State-of-the-

art routers today take 1–2 ns on ASICs [21, 22]. Low-radix

routers offer a balance between latency, throughput, area,

and cost and are the most popular solutions in ASICs today.

Latency is a challenge in these designs, and there have

been proposals to reduce latency by enabling messages to

setup fast paths and bypass routers. SMART [22] is one

such technique, that adds an intelligent mux at every hop.

This mux acts as a repeater, forwarding the packet to the

next router without latching it if there is no contending

packet at the router wishing to use the output link. If there

is contention, the mux sends the incoming packet to the

router’s clocked buffers instead like a traditional design. In

SMART NoCs, long-range bypass paths are virtual: packets

get the illusion of having dedicated repeated wires despite

actually going over a series of shared link segments over a

conventional low-radix topology.

Low-radix Mesh, Torus, and SMART routers are still quite

expensive for FPGAs, especially due to the buffers. We

generated low-radix routers using OpenSMART [16] and

CONNECT [12] and report their FPGA cost in Table I.

Buffered High-Radix Routers. High-Radix routers offer

extremely low-latency and high-throughput, due to physical

express channels between distant routers. Flattened Butter-

fly [20] and Multi-drop Express Channels (MECS) [23] have

been popular techniques in this domain. However, these

designs come at the cost of high-radix (i.e., multi-ported)

routers that add delay, area, and power overheads due to

larger buffers, crossbars, and arbiters. Moreover, scaling the

number of ports can lead to quadratic increase in cost. This

is partly why such high-radix topologies have not made it to

NoCs in commercial multicore chips, and are only used in

HPC switches [19]. Applying this technique directly to an

FPGA is even more prohibitive than low-radix routers; for

instance, doubling the ports from low-radix (4-port) to 8-port

router increases LUT and FF utilization by 3.25× [16].

Bufferless Routers. Bufferless routers have been pro-

posed in the past to address area and power costs of

routers. Examples include CHIPPER [24], BLESS [25] and

SCEPTER [26]. These designs rely on deflections to handle

contention. The key trade-off with these designs is the high-

latency for deflections, and a solution to handle livelocks.

Bufferless routers have not made it to mainstream ASICs

as the power consumption of NoCs at nominal utilization is

observed to be quite low [27], while the area costs of routers

Table I: FPGA implementations of 32b NoC routers.

Router FPGA Device LUTs FFs Clk2

OpenSMART 4VC, 1-deep [16] Virtex-7 VX690T 3700 1700 5

BLESS (no buffers) [25] Virtex-2 Pro 1090 335 13.2

CONNECT 2VCs 16-deep [12] Virtex-6 LX240T 1562 635 9.6

Split-Merge DOR [13, 29] Virtex-6 LX240T 1785 541 4.5

Altera Qsys [15]1 Stratix IV C2 1673 - 3.1

Hoplite [14] Virtex-7 485T 78 165 1.2

FastTrack (This Work) Virtex-7 485T 191–290 290 2

1Derived from Table 1 of [15] for fully-connected 16-node system. 2Period in ns

are acceptable in front of large SRAM and cores. However,

these metrics change quite drastically on a FPGA.

2) FPGA Overlay NoCs: Unlike ASICs, where logic and

wiring resources can be provisioned as required, the FPGA

substrate has a fixed balance between these components

as decided by the FPGA vendors. Most modern FPGA

chips are wire-rich but LUT and FFs are a prime resource.

Table I compares the LUT and FF costs across a suite

of NoC proposals. ASIC NoCs such as OpenSMART [16]

consume thousands of LUTs and FFs. Even bufferless NoCs

like BLESS are area expensive in terms of LUTs as they

are not optimized for FPGAs. FPGA NoCs such as CMU

CONNECT [12] and Penn Split-Merge [13] reduce resource

costs but are still quite expensive in terms of LUTs and FFs,

particularly against Hoplite [28].

Hoplite NoC. Hoplite [14] is one of the most efficient

designs today. It is more than an order of magnitude smaller

in LUT cost and 1.5–10× faster in operating frequency

than the best known alternatives today. It uses bufferless

switches which are heavily optimized for the FPGA mi-

croarchitecture, utilizing just 1–2 LUTs per bit of the packet

payload on a Xilinx FPGA. Figure 9a shows an example of

a base Hoplite switch, taken from Kapre et al. [28, 30],

which uses just two 3:1 muxes, both of which can be

independently selected by the inputs. The NoC exit is shared

with the S port to further reduce LUT costs. Livelock

avoidance is implemented using static turn prioritization

discussed in [30]. The routing decode logic is based on

a simple Dimension-Ordered Routing (DOR) function that

routes packets in the X dimension before allowing packets

to turn in the Y dimension (W→S always has highest

priority). Hoplite uses a 2D unidirectional torus which is

chosen specifically to lower the cost of switching crossbar

implemented in LUTs.

Optimizing for Performance and Cost. Though Ho-

plite is extremely efficient in terms of area and power, it

uses wiring resources poorly due to repeated traversals of

the NoC links by deflected packets. It thus suffers from

both high latencies, especially in the worst case, and low-

throughput because of the unidirectional torus topology.

In this work, we seek to merge two extreme design

points for NoC routers: bufferless and high-radix, and design

a FPGA-optimized low-cost version of such a NoC. Our

design, FastTrack, seen in the last row of Table I, adds only

FF0 FF1LUT1 LUT2

Distance

Two (LUT) Hops

in out

clk

Figure 3: Wire delay characterization of FPGA chips by

adjusting length of a registered wire and inserting

programmable number of logic stages along the wire.

710 MHz

●

●
●

●

●

●

●

●

●

0

250

500

710

1000

2000

2 4 8 16 32 64 128 256

Distance (SLICE)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Hops

● 0

1

2

3

4

5

6

7

8

Figure 4: Characterizing the speed of FPGA interconnect

for the Xilinx Virtex-7 485T FPGA.

marginal cost over Hoplite, but provides extremely high-

performance gains as we show later in our evaluations. The

key insight in FastTrack is to leverage the heterogeneity

offered by modern FPGA interconnect.

III. FPGA WIRE CHARACTERIZATION

We characterize FPGA wiring infrastructure via two ex-

periments, to study the impact of virtual and physical express

links on FPGAs.

1) Virtual Express Links: We perform a simple experi-

ment where we create a Verilog circuit with manually instan-

tiated FDRE (Xilinx Flip-Flop) and LUT6 (Xilinx Lookup

Table) components as shown in Figure 3. We also supply

physical location constraints for these components along

an FPGA column with XDC (Xilinx Design Constraints)

layout constraints by varying (1) Distance (i.e. SLICEs)

between consecutive components, and (2) number of Hops

(i.e. number of equidistant LUT stages between the two

registers). By placing only two registers in two locations,

and having no LUT hops, our experiment measures the raw

speed of the FPGA wiring fabric in absence of congestion.

By introducing the LUT hops in a programmable fashion,

we model the effect of the wire exiting the interconnect and

entering a NoC router(s). This effect models the behavior of

the SMART NoC [22] discussed in Section II-A1 where a

packet is able to tunnel through multiple NoC routers in a

single clock cycle on an ASIC. Unlike ASICs, FPGAs must

pay the penalty of entering and exiting the fabric.

FF0 FF3LUT3LUT1 FF1 LUT2 FF2

Two (LUT-FF) Hops

Distance

express link

in out

clk

Figure 5: Idea of Express physical channels bypassing

multiple LUT-FF stages to exploit fast FPGA wiring.

710 MHz

●

●
●

●

●

●

●

●

●

0

250

500

710

1000

2000

2 4 8 16 32 64 128 256

Distance (SLICE)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Hops

● 0

1

2

3

4

5

6

7

8

Figure 6: Quantifying the impact of express physical

bypass channels on frequency of the resulting design.

We plot the results in Figure 4. There is a ceiling of

≈710 MHz, the peak frequency of the clock distribution net-

work, so results above this frequency are purely theoretical.

As expected, the fastest frequency is achieved with Hops=0

and Distance=1. As we increase the distance between the

registers the frequency drops to 250 MHz at a distance of 256

SLICEs (close to chip dimensions). Even with a single LUT

hop (Hop=1), we observe a noticeable drop in frequency to

450 MHz at a maximum distance of 128 SLICEs. With more

LUT hops, the frequency degrades to ≈200 MHz at almost

all distance counts. Our experiment shows that the FPGA can

support close-to-full-chip traversal at 250 MHz in absence of

congestion. Long wires use the faster FPGA routing tracks

and are able to travel long distances quickly. We confirm

the well-known observation that the cost of CLB-to-CLB

routing, and getting onto and off the interconnect fabric, is

large.

2) Physical Express Links: Next, we conduct a feasibility

experiment to understand the potential for providing express

bypass links in the NoC to enhance packet routing latencies.

We do this by adapting our wire delay characterization

experiment from Section III to provide configurable bypass

to a fully-pipelined sequence of tightly-coupled LUT-FF

pairs. The LUT-FF pair is implemented in the same primitive

to guarantee fast performance and model the effect of a

packet traversing one NoC router per pair. As before, we

vary the Distance between the LUTs where FFs are

directly attached to adjacent LUTs. We also provide a new

express link wire that bypasses a programmable number of

LUT Hops. Based on the desired operating frequency of the

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

sw

(a) Fully Populated Topology FT(16, 2, 1)

sw

sw

sw

sw

sw

swsw

sw

swsw

sw

sw

sw

sw

sw

swsw

sw

swsw

(b) Depopulated Lower Cost Topology FT(16, 2, 2)

Figure 7: FastTrack Topology for a 4×4 Torus NoC with D=2. The notation is FT (N2, D, R). The red wires represent

express links that exploit faster FPGA routing resources to bypass multiple NoC routers. Wraparound links are shown with

dotted lines. The shades correspond to FastTrack router complexity, with darker switches being more expensive.

circuit, we can choose Distance and Hop combination as

required by the design. Alternatively, given a design with

required Distance and operating frequency constraint, we

can choose Hop that meets the constraints. We illustrate the

experiment circuit in Figure 5 and show a single express

link bypassing two LUT-FF stages.

In Figure 6, we show the effect of implementing physical

express links on the Xilinx Virtex-7 485T FPGA. Unlike

the previous experiment (Figure 4), when using the express

links design the frequency degrades a lot more gracefully

even when bypassing several LUT-FF stages. Instead of

bottoming out at ≈200 MHz at short Distance values, the

frequency degradation is linear with increasing Distance.

It eventually drops to 250 MHz but allows us to travel 32–

64 SLICE hops. This experiment provides evidence that

express links are able to bypass several LUT-FF stages using

fast FPGA routing tracks to retain high-speed operation in

absence of congestion. It is important to note that on an

ASIC, the virtual express channels would still provide scal-

able performance unlike FPGAs, where the cost of exiting

and re-entering the FPGA interconnect is much higher.

3) Leveraging FPGA Wires for Overlay NoCs: Figure 6

demonstrates that FPGA wires are quite fast, and the inter-

connect alone can provide multi-hop traversal within a cycle

at 250MHz. However, exit from the interconnect fabric is

expensive in terms of delay, and traversal through a series

of LUTs within a cycle can limit frequency tremendously.

While these observations are not surprising for FPGA prac-

titioners, this has not been exploited to design faster overlay

NoCs to the best of our knowledge. We leverage these

observations to motivate the design of FastTrack NoC.

IV. FASTTRACK

In this section, we introduce the key idea behind Fast-

Track, and discuss the topology, microarchitecture and rout-

ing policies that are possible in our design. These three NoC

design aspects influence both the cost (area and power), and

performance of the resulting implementation.

A. FastTrack Topology

FastTrack introduces additional physical links within the

NoC topology to provide dense connectivity while minimiz-

ing area overhead over the baseline NoC.

Each FastTrack topology is parameterized formally as

FT(N2, D, R) over the following variables:

• System size N ×N

• Length D (1 ≤ D ≤
N

2
) of each express link in hops.

• Depopulation factor R (1 ≤ R ≤ D) that controls

the cost of the topology by instantiating nominal Ho-

plite routers in between FastTrack routers. (R-1) is the

number of nominal Hoplite switches between any pair of

FastTrack switches D hops away.

Each NoC channel in a FastTrack NoC topology consists

of two kinds of links: short (Sh) links between adjacent

routers, and a variable number of express (Ex) links be-

tween routers that are D-hops apart. The express links are

braided through the rings to provide a distance D for each

connection. This increases the number of wires required

by the NoC by a factor of D

R
+ 1. In the most expensive

extreme configuration, where R=1, we would need D× more

wires in each channel. For average FPGA applications, it

has even been argued that FPGA wires are “free” [12] as

the FPGA vendors allocate more interconnect than needed

to handle worst-case customer requirements. However, to

be fair, we consider a resource equivalent design would

use multiple physical Hoplite channels without FastTrack

adaptation. We explore this iso-resources case in Section VI,

and even in this case demonstrate that FastTrack makes

better use of available wiring resources and outperforms the

multi-channel alternative. In the cheapest configuration that

still retains express links R=D, we would have at most

a doubling of the wiring requirements. In Figure 7, we

show two FastTrack topologies: FT(16, 2, 1) and FT(16,

2, 2). In addition to wiring costs, the NoC switch must also

be modified to support an extra express input and express

output, as we describe in subsection IV-B. Thus the choice

of D and R opens up a space of possible topologies where

we can tradeoff area (logic cost of switches, and wires) in

exchange for performance. This offers us a better knob to

control cost unlike the expensive high-radix router designs

in [16].

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

Figure 8: Packet traversal

from (0,3)→(3,0).

In Figure 8, we show an

example of packet traversal

path from (0,3) → (3,0) ex-

ploiting two express links

and two short links. The

packet starts off in the

slow links, and upgrades to

faster links later as the ex-

press path does not directly

connect to the packet des-

tination wholly within the

express network.

B. Router Microarchitecture

The FastTrack NoC router is different from the baseline

Hoplite router (Figure 9a) as it needs to support switching

along the express links in addition to the original short

links. We have a few choices in determining the cost of

the switch by choosing which connections are possible. In

general, the switch needs to support two extra inputs and

outputs (one set per dimension) for the express links. This

increases the number of inputs to the switching multiplexers

and requires a redesign of the routing function and offers us

several design choices and associated routing policies when

handing packets.

FT (Full) Router. Figure 9b shows the microarchitecture

of a fully-loaded FastTrack router. These were the Black

routers in Figure 7. We permit packets to hop on to an

express link from any input port, and from any incoming

link (short or express). Packets may start on an express

link, or start on a short link if the express one is occupied

and then upgrade to it later when its free. This freedom

comes at a cost of more inputs to each of the output

multiplexers permitting this lane change. However, packets

cannot transfer from express to short links except when

turning to avoid livelock (WEx → SSh, and NEx → ESh,

See subsection IV-D). Compared to a baseline Hoplite router

(Figure 9a), which requires 2× 3:1 multiplexers, the FT

router requires a 5:1 mux, and 4× 4:1 multiplexers.

FTlite Routers (Topology). FastTrack also supports

lighter variants of routers, which are lower area, at the cost

of reduced routing flexibility. One class of FTlite routers

exist because of the depopulation factor R discussed earlier.

For instance, the Grey routers in Figure 7 have only one

express link coming in and out, thus requiring one less set

of output multiplexers and one less input to the remaining

express output. The White routers in Figure 7 are just the

original Hoplite routers (Figure 9a) with no express links

connected to them.

FTlite Routers (Switch Complexity). We also add a

second class of FTlite routers that have express links, but

restricted policies for hopping on to these links. Figure 9c

shows the microarchitecture of a FTlite(Inject) router that

permits packets to hop on express links only at the client/PE

injection port, not from other ports. A packet on an express

link permanently stays on the express links while those on

short links are destined to remain on the short links until

delivery. This implementation is low cost and requires a set

of 3:1 multiplexers for the SEx and EEx outputs. The Black

routers in Figure 7 can also use this design variant.

C. Routing Policies

The routing policy sets the select lines of the various

muxes inside the FastTrack router.

Dimension-Ordered Routing. By default, the FastTrack

NoC uses XY routing, i.e., all packets use the E links before

using the S links. Once the direction is chosen, packets try

to use express links if ∆X ≥ D or ∆Y ≥ D, else short

links.

Congestion. The various multiplexer configurations de-

scribed in subsection IV-B and the DOR function prune

the set of possible connections that may be possible during

packet routing on the NoC. The absence of a particular input

to a multiplexer restricts packets along certain paths in the

NoC. The use of DOR routing forces packets to traverse in

the X ring first before turning along Y . However, conflicts

are possible when multiple packets want the same resource

(outgoing link). This is resolved via the following routing

policies:

3
:1

3:1

W
E

N

SPE

(a) Base Hoplite

4
:1

5
:1

4:1 4:1

WSh

ESh

NSh

SSh

WEx

EEx

NEx

SExPE

(b) FT (Full): Ex→Sh (Olive links) + Sh→Ex (Blue links)

3
:1

3
:1

3:1 3:1

WSh

ESh

NSh

SSh

WEx

EEx

NEx

SExPE

(c) FTlite (Inject): No lane crossing (Red colored
resources extra over base Hoplite)

Figure 9: Microarchitecture of different variants of FastTrack routers exploring cost-performance tradeoffs.

• Client/PE input port gets the lowest priority when inject-

ing traffic into the NoC. This is necessary as all outgoing

ports may be needed to service in-flight packets in the

NoC in a given cycle. With deflection routing there are

no slots to buffer packets on contention and blocking PE

injection is needed.

• The DOR routing function will determine if the address

∆s of the packet necessitate the use of a express link.

If the express link is already occupied by an in-flight

NoC packet, or if the DOR function determines the packet

address ∆s are too small, the packet is sent along the short

link. In case of contention for the same short link, packets

are deflected.

• Packets within the X ring of the network have higher

priority over packets in the Y ring. This is designed in

avoid livelocks in the deflection routed torus, explained

in the following subsection.

D. Livelock Avoidance

Since FastTrack is a deflection based NoC, it can suffer

from livelocks. Livelocks are the problem where packets

continue to get deflected forever and never reach their

destination. In FastTrack, there can be two scenarios that

could lead to livelock:

• A turning packet may keep getting deflected within a

ring and is never able to turn creating a livelock.

• A packet on a express link that needs to get on a slow

link to reach its destination may not be able to do so due

to repeated contention on the slow links.

Traditional approaches to livelock avoidance in bufferless

routers [25, 26] involves adding counters in the packet

to limit the number of deflections and have the router

intelligently prioritize those packets that have been deflected

a certain threshold number of times. For FPGA NoCs, all

of these would contribute to precious LUT area. Instead, we

develop a lightweight solution for FastTrack.

To avoid the first kind of livelock, we modify the DOR

routing scheme to prioritize turning traffic over column

traffic as demonstrated in [30]. Thus W → S turn has

higher priority and can cause N packet to get deflected E,

a turn that is not normally possible. The routing function

is designed to ensure a packet is deflected exactly once per

ring and makes progress towards the destination by dropping

down the Y ring one switch at a time.

To avoid the second kind of livelock, we have to make

two changes. First ensure that packets enter the express links

only if the packet destinations are directly reachable entirely

within the express network. Second, we ensure that Express

to Short transitions are only possible at a turn from WEx →

SSh or NEx → ESh ports. This assigns the highest priority

to the WEx or NEx ports, and with suitably design routing

function, we can ensure that deflected packets can eventually

arrive on this port after at most two deflections at this router.

WSh packets that are deflected by WEx → SSh turn may use

EEx port and return as a higher priority WEx packet after

exactly one traversal around the ring. A NEx packet that

want to go SEx can be deflected to EEx and will return as

WEx packets with high priority. A NSh packet that wanted

to proceed to SSh will need to deflect ESh and return as a

WSh packet after one deflection, and suffer at most second

deflection as a WSh packet. To avoid livelocks at exits, we

must allow N packets to take either E ports. This bounds

the number of possible deflections in the router for all ports,

and guarantees forward progress.

V. HARDWARE IMPLEMENTATION

In this section, we discuss the results of our hardware

implementation experiments. We use Vivado 2017.2 and

Xilinx Virtex-7 485T (-2) for our mapping. We use pa-

rameterized RTL Verilog code for the different designs

and generate the different configurations used in this paper

through appropriate assignment of values to the Verilog

design parameters. The routers are locked to rectangular

regions of the chip in a manner the uniformly divides the

FPGA resources into rectangular tiles. For the unidirectional

torus ring topology, we adopt a folded layout to balance wire

lengths. We use a lightweight dummy client to ensure the

design does not get optimized away by the CAD tools. We

Table II: Resource Usage and Frequency of an 8×8 NoC

(256b) on a Virtex-7 485T -2 speed grade.

Config. LUTs FFs MHz Power (W)

Hoplite 34K 83K 344 9.8

FT (64,2,1) 104K (2.6×) 150K (1.8×) 320 (0.93×) 25.1 (2.5×)

FT (64,2,2) 69K (1.7×) 117K (1.4×) 323 (0.93×) 19.9 (2×)

measure LUT and FF costs (area), wires per ring (area) as

well as Frequency (performance) of the design.

A. FPGA Mapping Results

We present the implementation results of mapping a 256b-

wide 8×8 NoC on the complete FPGA chip in Table II

as reported by Vivado 2017.2 after placement and routing.

We supply a timing constraint of 500 MHz to drive the

CAD tool. When compared to baseline Hoplite design, the

FastTrack topologies are 1.7–2.6× larger, about the same

speed faster, and 2.5× more power hungry. As expected

FastTrack NoCs are larger due to more expensive switches,

but the frequency is still close to the baseline Hoplite

frequency due to the long wires on the FPGA fabric. In this

implementation, each Hoplite router is pipelined with regis-

ters at inputs and outputs. We can also insert a configurable

number of additional registers along the NoC links if an

even faster frequency if desired. When showing cost-aware

results later, we also compare performance against replicated

Hoplite designs that reallocate the LUT and wiring resource

to simply create parallel Hoplite channels. In this scenario

we do not modify the client interfaces and only permit a

single packet injection and delivery to ensure fair compar-

ison. When considering power consumption, FastTrack is

2–2.5× more expensive than Hoplite due to the 2× increase

in registers and the longer wire lengths on the express links

being driven by those registers.

B. Routability Analysis

While FPGAs are wire-rich architectures, their capacity

to support multiple parallel fast tracks will be ultimately

constrained by device limits. For various NoC system sizes,

we characterize the NoC datawidths that the FPGA can

support before saturating available resources. In Figure 10,

we show the peak feasible datawidth in the baseline Hoplite

NoCs and Fast-Track NoCs on the Virtex-7 485T FPGA.

For 4×4 NoC, with D=2, we are able to support 512b

datawidths. These wide payloads allows the deflection routed

NoC to send an entire x86 cacheline directly as a single

packet. For larger NoC sizes, the wiring capacity is reduced

by the corresponding factor and a cacheline transfer must

be serialized. Furthermore, we also consider the effect of

NoC on user design logic and note 20–30 MHz reduction

in frequency due to congestion. This is common to both

Hoplite and FastTrack designs.

64−PE NoC <N,D>

N
o

C
 D

a
ta

w
id

th

588.0

518.0

444.0

439.0

404.0

488.0

508.0

385.0

417.0

394.0

367.0

NA

422.0

410.0

390.0

369.0

360.0

351.0

352.0

337.0

315.0

296.0

322.0

145.0

385.0

354.0

340.0

394.0

366.0

380.0

357.0

334.0

320.0

NA

NA

NA

351.0

366.0

340.0

356.0

325.0

346.0

324.0

340.0

323.0

NA

NA

NA

304.0

285.0

274.0

283.0

268.0

NA

NA

NA

NA

NA

NA

NA

368.0

118.0

331.0

NA

NA

NA

NA

NA

NA

NA

NA

NA

362.0

381.0

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

<16,1> <16,2> <64,1> <64,2> <64,4> <128,1> <128,2>

1024

512

384

256

192

128

96

64

48

32

16

8

Figure 10: Peak Frequency (MHz) of FastTrack NoCs of

varying datawidths mapped to the Xilinx Virtex-7 485T

FPGA. Black cells with NA did not fit the device.

● ● ●
●

●
●●

●

●

●

●

●

●

●

● ● ●
●

●
●●

●

●

●

●

●

●

●

● ● ●
●

●
●●

●

●

●

●

●

●

●

● ● ●
●

●
●●

●

●

●

●

●

●

●

RANDOM TRANSPOSE

BITCOMPL LOCAL
0

.0
1

0
.1

0
.5 1

0
.0

1

0
.1

0
.5 1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Injection Rate

S
u

s
ta

in
e

d
 R

a
te

● FT (64,2,1) FT (64,2,2) Hoplite

Figure 11: Effect of various 64 PE FastTrack NoCs (D,R

combinations) on sustained rate for synthetic traffic.

VI. EVALUATION

In this section, we evaluate different FastTrack and Ho-

plite NoC configurations and measure throughput, latency

(average and worst-case), and power metrics. We consider

various system sizes from 16–256 PEs and consider various

combinations of D and R that configure FastTrack cost.

We use traffic from synthetic sources (RANDOM, LOCAL,

BITCOMPL, and TRANSPOSE) with varying injection rates

for identical workloads with 1K packets/PE to offer a self-

contained comparison against Hoplite. We also consider

realistic workloads extracted from FPGA accelerator case

studies such as Sparse Matrix-Vector Multiplication, Graph

Analytics, Token LU Factorization Dataflow, and Multi-

Processor FPGA overlays. For most of the plots we consider

8×8 NoC configuration with RANDOM traffic pattern unless

indicated.

How does FastTrack throughput compare against

original Hoplite NoC for synthetic workloads? The key

question we must address is whether FastTrack is able to

make good use of the additional bandwidth made available

by the faster links. For an 8×8 NoC, FastTrack outperforms

Hoplite by up to 2.5× for RANDOM, 2× for BITCOMPL

and 1.5× for LOCAL workloads as shown in Figure 11. The

performance wins are non-existent for TRANSPOSE traffic

and at injection rates below 10% across all traffic patterns.

This is expected as these traffic patterns and conditions do

not send (enough) packets to destinations that would require

the use of the faster links As expected, larger values of

R, with greater depopulation, result in reduced performance

when compared to the fully populated FastTrack NoC. It is

worth noting that the depopulated FastTrack NoCs still beat

baseline Hoplite.

What is the effect of the use of FastTrack links on aver-

age latency behavior of the synthetic workloads? Latency

reduction for NoC packets is anticipated to be the primary

outcome of the use of FastTrack express links. In Figure 12,

we show the average latency trends for the various NoCs

are observe significant improvement in the throughput where

the NoC is saturated (congested) and latencies start to climb

significantly. At 100 cycles average latency we see as much

as 5× higher saturation throughput when using FastTrack

R=1 (full population) NoC for RANDOM and BITCOMPL

traffic. The saturation throughput wins are a more modest

2× for LOCAL and TRANSPOSE traffic pattern. Again, we

see the actual use of the faster links depends on the spatial

distribution of packet traversals and influences the presence

and quantum of latency improvements.

Does FastTrack make efficient use of FPGA intercon-

nect resources over a multi-channel Hoplite design? As

discussed previously in Section IV-A, an iso-wiring resource

evaluation will fairly judge whether FastTrack makes better

use of FPGA interconnect than replicating the original Ho-

plite NoC. In Figure 13, we see that FastTrack stays compet-

itive and delivers better throughput and average latency for

RANDOM traffic pattern when compared to the multi-channel

Hoplite design requiring identical wiring resources. For

N=64, and D=2 and R=1,2 designs, the Hoplite-3x design

with three independent physical channels will use the same

number of wiring resources as FastTrack. FastTrack beats

multi-channel Hoplite by 1.2–1.4× for sustained rate, and

by ≈0.7–5× for average latency. Furthermore, to exacerbate

the gap, the multi-channel NoC might need identical wiring

resources but costs the designer 1.5× more LUTs than

FastTrack.

●● ●● ●● ●● ●●
●

●
●

●● ●
●

●●●● ●● ●●
●

●
●

●
●

●● ●
●

●● ●● ●●
●

●
●

●

●

●

●

●●
●

●

●● ●●
●

●
●

●

●

●

●

●

●

●●
●

●

RANDOM TRANSPOSE

BITCOMPL LOCAL

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0

25

50

75

100

125

0

25

50

75

100

125

0

25

50

75

100

125

0

25

50

75

100

125

Injection Rate

A
ve

ra
g

e
 L

a
te

n
c
y

● FT (64,2,1) FT (64,2,2) Hoplite

Figure 12: Effect of various 64 PE FastTrack NoCs (D, R

combinations) on avg. latency of packets for synthetic

traffic.

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●
●

●
●●

● ● ●●

●
●

16 64 256

0
.0

1

0
.1

0
.5 1

0
.0

1

0
.1

0
.5 1

0
.0

1

0
.1

0
.5 1

0.0

0.1

0.2

0.3

0.4

Injection Rate

S
u
s
ta

in
e
d
 R

a
te

 (
p
k
t/
c
y
c
/P

E
)

●Hoplite−3x Hoplite FT(N,2,2) FT(N,2,1)

(a) Sustained Rate Trends

● ●●● ●●
●●●●
●

● ●
●

● ● ●●●●

●
●

●
●● ●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

16 64 256

0 0
.1

0
.2 0 0
.1

0
.2 0 0
.1

0
.2

0

25

50

75

100

125

Injection Rate

A
v
g
 L

a
te

n
c
y

 (
c
y
c
)

●Hoplite−3x Hoplite FT(N,2,2) FT(N,2,1)

(b) Average Latency Trends

Figure 13: Measuring the effect of multiple physical

channels on Hoplite vs. FastTrack for N=16, 64, and 256.

When considering FPGA implementation costs, is

FastTrack a competitive alternative to baseline Hoplite

NoC? Next, we evaluate the LUT cost and operating fre-

●

0

50

100

150

0 5K 10K 25K

Area (LUTs)

S
u
s
ta

in
e
d
 R

a
te

 (
M

ill
io

n
 P

a
c
k
e
ts

/s
)

●Hoplite−3x

Hoplite−2x

Hoplite

FT(64,2,2)

FT(64,2,1)

(a) Logic Area-Throughput Tradeoffs

●

0

50

100

150

0 25 50 75 100

Wire Count

S
u

s
ta

in
e

d
 R

a
te

 (
M

ill
io

n
 P

a
c
k
e

ts
/s

)

●Hoplite−3x

Hoplite−2x

Hoplite

FT(64,2,2)

FT(64,2,1)

(b) Wire Count-Throughput Tradeoffs

Figure 14: Considering the effect of FPGA cost (Logic and

wiring) when comparing performance of 8×8 FastTrack

NoC using RANDOM traffic pattern at 100% injection rates.

quency of the FastTrack and Hoplite NoC designs e this

expense through a cost-aware comparison. In Figure 14a, we

show the throughput of the NoC as a function of FPGA LUT

area and operating frequency of the NoC. Here we see, that

the R=1 and 2 designs offer almost 2.5–3× higher through-

put over baseline Hoplite. When comparing against Hoplite-

2x (a duplicated NoC), we see that advantages reduce to

≈1.8× for the best FastTrack configuration. When consider-

ing wiring costs, we see in Figure 14b that FastTrack allows

better use of wires over Hoplite-3x with a 1.2× throughput

advantage for the FT(64,2,1) design at 100% injection rate.

When equating FT(64,2,2) design against Hoplite-2x with

identical wiring costs, there is an advantage in favor of multi-

channel Hoplite. Both the FT designs require fewer LUTs

than the multi-channel counterparts thereby delivering better

overall results when factoring both logic and wiring cost

into the comparison. This shows that reclaiming the area of

the FastTrack NoC to simply implement replicated Hoplite

NoCs will not match the performance delivered by the use

of faster links.

Does FastTrack work for real workloads such as

communication traces from FPGA accelerators? Yes,

FastTrack delivers superior results when routing commu-

nication traces from real applications. We consider Sparse

Matrix-Vector Multiplication (used by many Deep Learning

kernels [31]), Graph Analytics, Token LU Factorization

Dataflow and Multi-Processor FPGA Overlay applications

for this experiment. The SpMV and Graph Analytics work-

loads are throughput-bound while Dataflow workload is

latency sensitive. We use datasets from the Matrix Market

suite [32], SNAP graphs [33], LU factorization of SPICE cir-

cuits [34] and SNIPER-PARSEC benchmarks [35]. Dataflow

workloads are latency sensitive as packets are injected into

the NoC along a dependency chain. For these experiments,

we measure workload completion time and quantify the

speedup from using the most suitable FastTrack topology

against a baseline Hoplite topology at identical PE counts

(upto 256 PEs for SpMV, Graphs and LU factorization,

32 PEs for PARSEC). Note that this speedup is above the

parallel speedups already provided when using a parallel

implementation supported by Hoplite. In Figure 15, we

observe FastTrack enhanced speedups as high as 2.5× for

SpMV, 2.8× for Graph Analytics, 1.4× for LU factoriza-

tion, and 2× for Multi-Processor workloads. The speedups

grow with increasing PE counts. Certain benchmarks like

hamm_memplus, bomhof_circuit_2, roadNet-CA,

and freqmine are characterized by predominantly local

traffic and does not need nor benefit from a faster NoC.

Performance scaling is best for Graph workload at large

PE counts highlighting the benefit of this NoC at larger

system sizes. For dataflow workloads, we see most of the

speedups at 256 PEs, due to serialization bottlenecks within

the PE logic for smaller PE counts. We note that the LU

factorization traces are notoriously difficult to parallelize

with low ILP, and the observed performance improvements

are a direct result of using FastTrack.

To what extent can FastTrack improve worst-case

latency of the deflection-routed NoC? Deflection routing

typically exacerbates the packet routing latencies due to

the possibility of repeated deflections of an unfortunate

packet. FastTrack should be able to alleviate this high cost

by allowing deflected packets to use the faster links. In

Figure 16, we show a packet latency histogram for an 8×8

NoC routing the RANDOM traffic pattern. We see the, at <

10% injection rate, the worst case packet latency for the fully

populated and depopulated FastTrack NoC which is 7× and

3× smaller than base Hoplite respectively. The reduction

in latency is a more direct consequence of the use of fast

links that skip switch hops and reduce the number of cycles

required for traversals.

If we vary length D, and R of FastTrack NoC express

link, how does that influence performance? Now that

we have established the performance advantages of using

the FastTrack NoC, we now investigate opportunities for

tradeoffs when configuring the NoC. FastTrack topology

generation offers us the opportunity to vary D and R

add20

bomhof_circuit_1

bomhof_circuit_2

bomhof_circuit_3

hamm_memplus

simucad_dac

simucad_ram2k

0 1 2 3

Speedup

M
a

tr
ix

 B
e

n
c
h

m
a

rk

PEs 4 16 64 256

(a) Sparse Matrix-Vector Multiplication

amazon0302

human_gene2

roadNet−CA

soc−Slashdot0902

web−Google

web−Stanford

wiki−Vote

0 1 2 3

Speedup

G
ra

p
h

 B
e

n
c
h

m
a

rk

PEs 4 16 64 256

(b) Graph Analytics

bomhof3_10656

ram8k_10823

s1423_2582

s1423_6648

s1488_4872

s1494_9156

s953_3197

s953_4568

sandia_12944

sandia_20105

0 1 2

Speedup

M
a

tr
ix

 B
e

n
c
h

m
a

rk

PEs 16 64 256

(c) Token LU Factorization Dataflow

blacksholes

dedup

fluidanimate

freqmine

vips

x264

0 1 2 3

Speedup

S
N

IP
E

R
/P

A
R

S
E

C
 B

e
n

c
h

m
a

rk

16 32

(d) Multi-Processor Overlay

Figure 15: FPGA accelerator communication traces for Sparse Matrix-Vector Multiplication, Graph Analytics, Dataflow,

and Multi-Processor Overlays. Speedups reported are for best FastTrack configuration against baseline Hoplite performance.

1 10 100

25 500 10K 25 500 10K 25 500 10K

0.1

1
5

Latency of transaction (cycles)

P
e

rc
.
o

f
P

a
c
k
e

ts
 (

%
)

FT (64,2,1) FT (64,2,2) Hoplite

Figure 16: Histogram of packet latencies for a 64 PE

FastTrack NoC configurations (D and R combinations) for

RANDOM traffic.

together to determine the best balance between additional

cost and delivered performance. The length D of the express

influences throughput of a fully populated FastTrack NoC

as shown in Figure 17 (R=1 case) for 50% injection rate of

RANDOM traffic on an 8×8 NoC. One would expect larger

D to result in superior performance, but this is true only

upto a limit. For the 8×8 NoC, we see a drop in throughput

for D=4, with better performance at D=2 and 3. This can

be explained by considering the effect of providing links

that are too long; packets are unable to exploit the fast

links for traversal distances ∆ < D. This eliminates an

increasing subset of the workload from being able to use

the fast links. We show the effect of extreme depopulation

in Figure 17 (R=D case). With depopulation, the quantum of

throughput improvements get reduced, but associated LUT

implementation cost is lowered. Thus, we need to judiciously

choose D and R for a cost-aware design.

Can we quantify the effectiveness of express links in

the FastTrack NoC? The use of express links depends

on the traffic pattern, and the degree of depopulation of

the NoC. For the RANDOM pattern on an 8×8 NoC, we

see the correlated increase in the use of express links and

drop in the use of short links in Figure 18a. We observe

●
●

●
●

R=1 R=D

0 2 4 6 8 0 2 4 6 8

0.0
0.1
0.2
0.3
0.4
0.5

D

S
u

s
ta

in
e

d
 R

a
te

PE ● 4 16 64 256

Figure 17: Effect of varying the distance of hop D on

sustained rate of the RANDOM workload for various NoC

system sizes.

0

200K

400K

600K

800K

Hoplite
FT

(64,2,2)
FT

(64,2,1)

NoC Configuration

C
o

u
n

t

Short Hops
Express Hops

(a) Link Usage

0

10K

20K

30K

40K

Hoplite
FT

(64,2,2)
F

(64,2,1)

NoC Configuration

C
o

u
n

t

Inputs
West_Sh
West_Ex

(b) Deflections

Figure 18: Tracking the usage of short and express links,

and deflections for a 64 PE evaluation using RANDOM

traffic.

that the use of the express links actually reduces the total

number of deflections (short+express) for any FastTrack

NoC. As we reduce the extent of depopulation, there are

more opportunities for using express links, and as a result

we observe a greater number of hops in those links. We track

the cumulative number of deflected packets at each input

port in Figure 18b for the same experiment configuration.

●

0

50

100

0 10 20

Energy (Joules)

S
u
s
ta

in
e
d
 R

a
te

 (
M

ill
io

n
 P

a
c
k
e
ts

/s
)

●

Hoplite−3x

Hoplite

Hoplite−2x

FT(64,2,2)

FT(64,2,1)

Figure 19: Throughput-Energy tradeoffs for a 64 PE NoC

with RANDOM traffic.

Here, input deflections refer to packets that are forced to

use a short link when they rather use a faster link. The use

of FastTrack reduces the number of deflection on the West

input by almost 25%. As we increase depopulation (increase

R), we see fewer opportunities for Input to deflect to a short

link and fewer deflections in the express links due to limited

usage.

How does FastTrack compare to Hoplite in terms

of dynamic energy efficiency? FastTrack NoCs contain

express links that are longer than the baseline Hoplite links,

and toggle 2× more registers to support data transfer on

these longer links. However, FastTrack does route the work-

loads in less time, and also reduces deflections in the NoC

resulting in lower activity rates. Here, we use dynamic power

data, reported by Vivado Power analysis, from Table II and

total time required for routing the workload to compute

energy. In Figure 19, we show the sustained throughput of

the NoC as a function of the energy spent in the system.

FastTrack FT(64,2,1) beats baseline Hoplite throughput by

almost 1.8× while requiring ≈20% less energy. Despite the

higher power requirement of the longer links, a combination

of superior throughput and fast clock rates on the long links

made possible by fast FPGA interconnect, FastTrack outper-

forms Hoplite on energy efficiency. FastTrack FT(64,2,1) is

slightly better than multi-channel replicated Hoplite NoC (3

channels) delivering a throughput improvement of 1.2× at

a cost of 15% more energy. The two-channel replicated Ho-

plite NoC offers even lower energy but sacrifices throughput.

The replicated Hoplite NoCs requires much lower energy as

the link lengths are still short like original Hoplite, but the

workload routing time is reduced due to parallelism.

VII. DISCUSSION

We believe that changes to the FPGA architecture can

provide even more benefits to a FastTrack-like design.

Hyperflex [36] interconnect in the Intel Stratix 10 FPGA

family offers the ability to use configurable pipelining within

the wiring infrastructure of the FPGA. The use of these

resources will permit FPGA overlay NoCs to run blazing fast

while exploiting deeply pipelined interconnect resources.

In the context of FastTrack, there are two considerations.

First, how does the use of Hyperflex affect the distance

traveled by a packet in a clock? We expect the fundamental

properties of wire speeds to stay unchanged and thereby

still allow express links to significantly reduce end-to-end

routing latency in the NoC. While a HyperFlex-pipelined

NoC link will run at a high clock frequency it will need to

traverse multiple pipeline stages resulting in a high end-to-

end latency. Second, an adaptation to Hyperflex by exposing

the selection of registering to user logic, may pave the way

for the direct application of SMART NoC to FPGA fabrics.

We recognize that this feature is currently not supported, but

offer a reason to consider its integration.

Hard NoCs [11] can deliver NoC speeds and properties

that are superior to FPGA overlay NoCs. While the results

from this study were primarily using ASIC NoCs ported to

FPGA fabrics for comparison, the key benefits remain valid

even against a lean FPGA-friendly NoC such as Hoplite

or FastTrack. What FastTrack shows, is the demand for

configurability in wiring infrastructure even within a hard

NoC solution. It is the position of these authors, that hard-

ening NoC routers is inappropriate due to the sheer diversity

of FPGA workloads, but hardening the NoC interconnect

links offers a promising compromise. When hardening NoC

links, lessons from FastTrack NoC engineering should hold

valuable insights on how to make use of express long

distance wiring in addition to short links for best outcomes.

VIII. CONCLUSIONS

The FastTrack FPGA overlay NoC shows how to exploit

fast FPGA interconnect to improve the performance of

packet-switched routing on FPGAs through the strategic

use of express links. This is based on the observation

that modern FPGA interconnect provides wires with vari-

able length (speeds) that makes these faster express links

possible. Our NoC implementation flow explores different

FastTrack design configurations (length of express link,

depopulation factor) and tailors the NoC to best support

application traffic requirements. An 8×8 FastTrack NoC is

1.7–2.5× larger than baseline Hoplite NoC while operating

at almost the same frequency, and requiring 2.5× more

power. For statistical workloads, we observe throughput and

latency improvements to the tune of 2.5× for sustained

rate and almost 2× for average latency. When considering

communication traces extracted from FPGA accelerator case

studies such as Sparse Matrix-Vector Multiplication, Graph

Analytics, Token LU Factorization Dataflow and Multi-

processor overlay applications, we see similar improvements

of up to 2.8× over baseline Hoplite performance. FastTrack

also beats Hoplite in terms of energy efficiency by a margin

of 2.25× as it retains high frequency operation on the

express links and takes advantage of faster throughputs.

Acknowledgments: The authors would like to thank Jan

Gray for providing access to the Hoplite source code.

REFERENCES

[1] C. Zhang et al., “Optimizing fpga-based accelerator

design for deep convolutional neural networks,” in

FPGA, 2015.

[2] M. Alwani et al., “Fused-layer CNN accelerators,” in

MICRO, 2016.

[3] H. Sharma et al., “From high-level deep neural models

to fpgas,” in MICRO, 2016.

[4] X. Ma, D. Zhang, and D. Chiou, “FPGA-Accelerated

transactional execution of graph workloads,” in FPGA,

2017.

[5] “The data vortex network.”

http://www.datavortex.com/network.

[6] D. Unnikrishnan et al., “Scalable network virtualiza-

tion using fpgas,” in FPGA, 2010.

[7] A. M. Caulfield et al., “Configurable clouds,” IEEE

Micro, vol. 37, no. 3, 2017.

[8] Amazon Inc., “Amazon EC2 F1 Instances: Run Cus-

tomizable FPGAs in the AWS Cloud.” https://aws.

amazon.com/ec2/instance-types/f1/, 2017.

[9] J. Gray, “GRVI-Phalanx: A Massively Parallel RISC-V

FPGA Accelerator Accelerator,” in FCCM, 2016.

[10] H. B. Kumar et al., “120-core microaptiv MIPS overlay

for the Terasic DE5-NET FPGA board,” in FPGA,

2017.

[11] M. S. Abdelfattah and V. Betz, “Networks-on-Chip for

FPGAs: Hard, Soft or Mixed?,” ACM Trans. Reconfig-

urable Technol. Syst., vol. 7, Sept. 2014.

[12] M. K. Papamichael and J. C. Hoe, “CONNECT: re-

examining conventional wisdom for designing NoCs

in the context of FPGAs,” in FPGA, 2012.

[13] Y. Huan and A. DeHon, “FPGA optimized packet-

switched NoC using split and merge primitives,” in

FPT, Dec. 2012.

[14] N. Kapre and J. Gray, “Hoplite: Building austere

overlay NoCs for FPGAs,” in FPL, Sept 2015.

[15] Altera, “Applying the benefits of network on

a chip architecture to fpga system design.”

https://www.altera.com/en US/pdfs/literature/wp/

wp-01149-noc-qsys.pdf, Apr 2011.

[16] H. Kwon and T. Krishna, “OpenSMART: Single-cycle

multi-hop NoC generator in BSV and chisel,” in IS-

PASS, 2017.

[17] J. Fowers et al., “A high memory bandwidth FPGA

Accelerator for sparse matrix-vector multiplication,” in

FCCM, May 2014.

[18] V. Betz and J. Rose, “FPGA Routing Architecture:

Segmentation and Buffering to Optimize Speed and

Density,” in FPGA, 1999.

[19] G. Faanes et al., “Cray cascade: a scalable hpc system

based on a dragonfly network,” in SC, 2012.

[20] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly

topology for on-chip networks,” in MICRO, 2007.

[21] P. Salihundam et al., “A 2 tb/s 6x4 mesh network for a

single-chip cloud computer with dvfs in 45 nm cmos,”

IEEE Journal of Solid-State Circuits, vol. 46, no. 4,

2011.

[22] T. Krishna et al., “SMART: single-cycle multihop

traversals over a shared network on chip,” IEEE Micro,

vol. 34, no. 3, 2014.

[23] B. Grot et al., “Express cube topologies for on-chip

interconnects,” in HPCA, 2009.

[24] C. Fallin et al., “Chipper: A low-complexity bufferless

deflection router,” in HPCA, 2011.

[25] Y. Cai, K. Mai, and O. Mutlu, “Comparative evaluation

of fpga and asic implementations of bufferless and

buffered routing algorithms for on-chip networks,” in

ISQED, 2015.

[26] B. K. Daya et al., “Quest for high-performance buffer-

less nocs with single-cycle express paths and self-

learning throttling,” in DAC, 2016.

[27] G. Michelogiannakis et al., “Evaluating Bufferless

Flow Control for On-Chip Networks,” in NOCS, May

2010.

[28] N. Kapre and J. Gray, “Hoplite: A Deflection-Routed

Directional Torus NoC for FPGAs,” ACM Trans. Re-

configurable Technol. Syst., vol. 10, Mar. 2017.

[29] N. Kapre et al., “Packet switched vs. time multiplexed

FPGA overlay networks,” in FCCM, 2006.

[30] S. Wasly et al., “HopliteRT: An Efficient FPGA NoC

for Real-Time Applications,” in FPT, Dec 2017.

[31] A. Parashar et al., “SCNN: An accelerator for

compressed-sparse convolutional neural networks,” in

ISCA, 2017.

[32] R. F. Boisvert et al., “The Matrix Market: A web

resource for test matrix collections,” Quality of Numer-

ical Software: Assessment and Enhancement, 1997.

[33] J. Leskovec and A. Krevl, “SNAP Datasets:

Stanford large network dataset collection.”

http://snap.stanford.edu/data, June 2014.

[34] N. Kapre and A. DeHon, “Parallelizing sparse matrix

solve for spice circuit simulation using fpgas,” in FPT,

Dec 2009.

[35] C. Bienia and K. Li, “Parsec 2.0: A new benchmark

suite for chip-multiprocessors,” in Proceedings of the

5th Annual Workshop on Modeling, Benchmarking and

Simulation, 2009.

[36] D. Lewis et al., “The StratixTM10 highly pipelined

FPGA architecture,” in FPGA, 2016.

