
Synchronized Progress in Interconnection Networks (SPIN) :
A New Theory for Deadlock Freedom

Aniruddh Ramrakhyani
School of ECE, Georgia Tech

aniruddh@gatech.edu

Paul V. Gratz
Dept. of ECE, Texas A&M University

pgratz@tamu.edu

Tushar Krishna
School of ECE, Georgia Tech

tushar@ece.gatech.edu

Abstract—One of the most fundamental design challenges in
any interconnection network is that of routing deadlocks. A
deadlock is a cyclic dependence between buffers that renders
forward progress impossible. Deadlocks are a necessary evil and
almost every on-chip/HPC network today avoids it either via
routing restrictions across physical channels (Dally’s Theory)
or with at least one escape virtual channel (Duato’s Theory).
This ensures that a cyclic dependence between buffers is never
created in the first place. Moreover, each solution is tied to a
specific topology, requiring an updated policy if the topology
were to change. Alternately, solutions have also been proposed
to reserve certain resources (buffers) and allocate them only
upon detection of a deadlock, thereby breaking the dependence
chain and recovering from the deadlock. Unfortunately, all these
approaches fundamentally lead to a loss in available bandwidth
due to routing restrictions or buffer resource usage restrictions.

In this work, we challenge the theoretical notion of viewing
deadlocks as a lack of routing resource (buffers) problem that
every solution to date is based on. We argue that a deadlock can in
fact be considered as a lack of coordination between distributed
entities. We prove that orchestrating a forward movement of
every flit in the deadlocked ring at exactly the same time, which
we call a spin, can guarantee forward progress and eventually
lead to deadlock resolution with a bounded number of spins.
We name this novel theory as SPIN (Synchronized Progress in
Interconnection Networks). SPIN eliminates the need for virtual
channels to achieve deadlock freedom thereby enabling fully
adaptive routing with only one buffer per message class. We
illustrate this capability by designing FAvORS, a novel truly one
VC fully-adaptive routing algorithm. We also present a low-cost
distributed implementation of SPIN and compare it against state-
of-the-art deadlock avoidance/recovery schemes. SPIN provides
up to 80% higher throughput, 52% lower area and 50% lower
power for an on-chip 64-core mesh, and up to 83% higher
throughput, 53% lower area and 55% lower power for an off-
chip 1024-node dragon-fly.

Keywords—Networks on chip; Interconnection Networks;
Deadlocks; Mesh; Dragon-fly

I. INTRODUCTION

Increasing demand for compute power has led to the pro-
liferation of Interconnection Networks in datacenters [1], [?],
supercomputers [2] and compute chips [3]. Given a network
topology, the key requirement for any network routing algo-
rithm is that of freedom from deadlocks. A network deadlock
is defined as a cyclic buffer dependency chain where each
packet in the chain is waiting to acquire a buffer resource
held by some other packet in the chain such that no forward
progress is possible making the system unusable.

The problem of routing deadlocks in interconnection net-
works has received significant attention from the research

Fig. 1: Deadlock Freedom with (a) Dally’s (acyclic CDG) and
(b) Duato’s (escape VC) theories. Dally’s theory places turn
restrictions in all VCs while Duato’s places them in only escape-
VC.

Fig. 2: Deadlock Freedom with SPIN.

community and plethora of schemes have been suggested for
achieving deadlock freedom while minimizing their impact
on performance at the same time [4], [5]. All prior research
addressing the problem of routing deadlocks has considered
deadlocks to be a resource dependency problem (buffers in this
case). In other words, a flit sitting in a buffer is unable to move
forward to the downstream router because there is no free
buffer available, and a deadlock occurs when this dependence
cycles back to the buffer of the original flit.

At the outset, we would like to distinguish between the
theoretical framework for deadlock freedom, and its implemen-
tation, acknowledging that there can be multiple implementa-
tions for the same theory. We classify prior implementations
into four theoretical frameworks:

• Dally’s theory [6] defines a strict order in acquisition of
links and/or buffer resources/Virtual Channels (VCs) by
network packets which ensures that a cyclic dependence
is never created, as shown in Fig. 1(a). Here Packet G
(sitting at south port of router) is not allowed to make a
left turn thereby preventing a cyclic buffer dependence.

• Duato’s theory [7] introduces the idea of escape paths
(implemented as an additional set of buffers) that packets
in a cyclic dependence can use to avoid or recover from
deadlocks. These are known as escape VCs in network
parlance, and are shown in Fig. 1(b). Routing inside
regular VCs has no turn restrictions and can lead to a
cyclic dependence; but routing inside the escape-VCs has

turn restrictions (for e.g., left turn is disallowed in Fig.
1(b)). Thus, packet F can move to the escape-VC of the
downstream router and break the cyclic dependence.

• Flow control based schemes [8] restrict packet injection
when the number of empty buffers in routers falls below a
threshold to ensure there is at least one free buffer in any
dependence chain, thus guaranteeing forward progress.

• Deflection routing [9] forces all flits to move every cycle
even if they get misrouted in the process. The routing’s
inherent deadlock free nature is due to forced packet move-
ment every cycle (though livelocks must be independently
addressed).

Any deadlock-free system today (in products or in research)
uses one of these four as the underlying theory guaranteeing
deadlock-freedom. Dally’s theory and deflection directly avoid
deadlocks. Duato’s theory and flow-control can either be used
to avoid deadlocks or recover from them.

In this work, we introduce an alternate theoretical frame-
work for deadlock freedom called SPIN (Synchronized
Progress in Interconnection Networks), with the following
working principle: if every router in a deadlocked cycle could
send out its blocked flits at exactly the same time, without first
requiring the downstream buffer to become free, there will be
safe forward progress. We call this a spin. Within a provable
upper bound in the number of spins, one of the packets would
exit the deadlocked loop thereby providing deadlock freedom.
We show an example in Fig. 2. In Fig. 2(a) packets A − H
are in a deadlock, as highlighted by the edges between routers
which represent the direction that each packet wants to travel
to for its next hop. After two spins, (Fig. 2(b) and (c)), packets
G and C exit the cycle thereby breaking the deadlock.

This paper makes the following key contributions:
• We present SPIN, a novel theoretical framework for dead-

lock freedom, with proof of correctness. SPIN is funda-
mentally different from all prior theories in that it views
deadlocks as a lack of communication/coordination, rather
than as lack of buffers problem, making it a valuable
addition to interconnection network literature.

• We compare SPIN qualitatively against the four existing
frameworks in literature and provide an insight into when
it makes sense to use SPIN over others.

• We present a low-cost, topology-agnostic, distributed im-
plementation of SPIN. We quantitatively compare it against
implementations of alternate frameworks.

• We design a first of its kind one-VC fully adaptive deadlock
free routing algorithm called FAvORS that leverages SPIN
for providing deadlock freedom. We profile its perfor-
mance on a mesh and dragonfly topology with just 1 VC
without adding any routing or flow control restrictions
which is impossible across known solutions today.

The key benefit of SPIN is that it is topology agnostic,
making it highly flexible compared to all prior frameworks.
Moreover, our proposed implementation performs the recovery
process in a fully distributed manner, allowing it to scale well

to large networks. Thus, we would like to emphasize that we
see SPIN as a promising choice for guaranteeing deadlock
freedom for irregular/application specific interconnection net-
works such as random graph based datacenter topologies like
Jellyfish [10], static and dynamically changing irregular on-
chip topologies occurring as a consequence of faulty/power-
gated network elements [11], [5], NoC generators [12], and on-
chip fabrics within domain-specific accelerators [13], [14]. All
these cross-domain interconnection networks can plug in SPIN
to provide deadlock free adaptive routing without requiring
additional VCs/buffers to avoid routing deadlocks1.

The rest of the paper is organized as follows: Sec. II pro-
vides relevant background and related work, Sec. III presents
the theory behind SPIN, while Sec. IV discusses an imple-
mentation with a walk-through example and demonstrations
of correctness/validation. Sec. V describes our 1-VC fully
adaptive routing algorithm. Sec. VI presents the evaluations
and Sec. VII concludes.

II. BACKGROUND AND RELATED WORK
In this section, we describe the deadlock freedom theories

and recent works based on these theories.

A. Dally’s Theory

Dally et. al. [6] introduced the concept of using a Channel
Dependency Graph (CDG) to model buffer resource depen-
dencies in the network and define a sufficient condition for
deadlock freedom: an acyclic CDG. In essence, an acyclic
CDG establishes a total order in the acquisition of buffer
resources by network packets. A network with cyclic CDG
can be made deadlock free by splitting each physical channel
that is part of the cycle/s into a group of VCs and defining a
strict priority order in the acquisition of these VCs such that
the extended CDG becomes acyclic.

A number of routing algorithms [16] have been proposed
that use Dally’s theory. These algorithms rely on either routing
restrictions at the cost of reduced routing adaptivity and
fault tolerance [4], [19], [20] or provide additional VCs [15],
[21], [16] for full/partial routing adaptivity at the cost of
increased router area and energy consumption. The turn model
[4] is the most popular direct application of Dally’s theory.
It prohibits a subset of the legal turns a packet can make
in the network just enough to make the CDG acyclic (e.g.
the deterministic XY routing or partially adaptive West-first
routing). Fully adaptive routing algorithms that use Dally’s
theory for deadlock freedom provision additional VCs to
provide routing adaptivity [16].

Deadlock avoidance schemes based on Dally’s theory suffer
from increased packet latency and throughput loss due to
routing restrictions, and/or increased energy consumption and
area requirements due to high number of VCs [5]. In addition,
the complexity of finding and removing cycles in the CDG
whose size scales exponentially with the number of VCs limits
the theory’s use to small networks [7].

1The buffer overhead in SPIN is a single buffer in the control path to
store the deadlock path as we discuss later. The framework does not add any
additional buffer/VC in the router datapath.

TABLE I: Comparison of Deadlock Freedom Theories
Theory Packet

Injection /
Scheduling
Restrictions

Acyclic
CDG
Required

Topology
Depen-
dent

VC cost for : Livelock
Free-
dom
cost

Minimal Deterministic Routing Fully Adaptive Routing
Mesh (NxM) Dragon-fly Mesh

(NxM)
Dragon-
fly

Dally’s Theory No Yes Yes 1 2 [15] 6 [16] 3 [15] None
Duato’s
Theory

No No∗ Yes∗∗ 1 2 2 3 None

Flow Control Yes No Yes 2 [17] 2 [18] 2 [17] 2 [18] None
Deflection
Routing

Yes† No No Not possible‡ Not possible‡ 0� 0� High

SPIN No No No 1 1 1 1 None
∗ Only an acyclic connected sub-graph
∗∗ Need to know topology to design acyclic CDG within the escape virtual channel.
† Cannot inject if number of packets currently at router is equal to the number of its output ports
‡ Minimal routing cannot be guaranteed by design
� Cost is 0 assuming bufferless design. Routing is adaptive in the sense that it prevents network hotspots from forming due to deflections.
However, deflections may be out of unfavorable ports so routing is not “fully adaptive”.

B. Duato’s Theory

Duato’s theory [7] guarantees deadlock freedom for net-
works with or without cycles in their CDG as long as there
exists a connected sub-graph in the extended CDG that is
acyclic. It splits each physical channel into a set of additional
VCs (i.e., buffers) to form an escape network. Packets in the
regular VCs are routed adaptively while those in escape VCs
get routed using a turn restriction based deadlock free routing
algorithm. Duato’s theory can be used for both deadlock-
avoidance [22], [23], [7] and deadlock-recovery [24], [25],
[26], [27], [28].

Duato’s theory enables deadlock free fully adaptive routing
at significantly reduced VC cost (only two for a 2-D Mesh)
compared to Dally’s theory, However, it suffers from (a)
energy and area overheads of escape network buffers, and (b)
additional routing tables/logic to support deadlock free routing
within the escape VCs.

C. Flow Control

Flow control techniques restrict the rate/time of packet
injection and/or delay packet routing to prevent network dead-
locks. Bubble Flow Control (BFC) [8], a popular flow control
technique, guarantees deadlock freedom for a ring topology if
there exists at least one free buffer/VC in the ring at all times.
This technique has been extensively used to provide deadlock
freedom for Torus networks [29], [30]. VCs are divided into
two sets : regular and escape, similar to the division used in
Duato’s theory. Fully adaptive routing is used in regular VCs
while packets are routed using Dimension Ordered Routing
(DOR) with BFC within the escape VC.

Canwen et al. [17] and Garcia et al. [18] leverage BFC
within a 2-D mesh and a dragon-fly. Static Bubble [5] lever-
ages BFC within dynamically changing irregular topology
derived from the mesh topology. Critical Bubble Scheme
(CBS) [31] implements global BFC by marking one packet
sized VC in each ring as Critical Bubble. The critical bubble
flows backwards as the packets move forward in the ring.

Worm-Bubble Flow Control (Worm-BFC) [30] extends CBS
to wormhole routing. Buffers are colored as grey, white and
black and serve as token for routers ensuring the presence
of critical bubble in the ring at all times thereby preventing
starvation and deadlock.

Flow-control based schemes suffer from limitations like
buffer coloring/token capturing complexity, expensive solu-
tions required for preventing packet injection starvation par-
ticularly for wormhole routing, energy overhead of circulating
the token/buffer color information and lack of guarantees for
packet latency that have prevented their adoption in commer-
cial and academic designs.

D. Deflection Routing

Deflection routing [9] or Hot-potato [32] routing eliminates
routing buffers by requiring routers to assign every input flit to
some output port every cycle. When more than one flit requests
the same output port, only one (chosen according to a priority
scheme) is allotted the output port and the rest are deflected
to some other available output port [9]. Each flit however is
assigned a unique output port and is not buffered. This idea,
and its variants has been leveraged by BLESS [9], MinBD [33],
CHIPPER [34], Jafri et al. [35] and others.

Deflection routing is a not a deadlock-freedom theory in
itself; its inherent deadlock-free nature is a result of the
observation that for any given router with n output ports,
there will always be some matching of up to n input packets
to the n output ports such that packet movement can be
ensured without causing deadlock (though not always forward
progress). Deflection routing however, suffers from major lim-
itations, including requiring livelock freedom solutions, large
reassembly buffers for out of order packet delivery and lack
of guarantees on packet latency. In addition, it offers lower
saturation throughput compared to buffered routing algorithms
and higher packet latency and network energy consumption at
high loads due to misrouting [35].

Fig. 3: Minimum injection rate (flits/node/cycle) at which 64-core
Mesh and 1024-node Dragon-fly deadlock with different traffic
patterns in 100K cycles with 3 VCs per port and 1-flit packets.

E. Comparison with SPIN

In Table I, we provide a qualitative comparison of our
proposed framework with other deadlock freedom solutions.
We highlight a few key attributes of SPIN. First, SPIN
is completely topology agnostic (i.e., does not require any
knowledge about the CDG), making it one of the most flexible
frameworks to date. We would like to emphasize that Dally’s
theory and Duato’s theory can work on arbitrary topologies;
however, their implementations inherently require a knowledge
of the CDG (i.e., network topology) at design-time [24],
[4], or reconfiguration-time [19], [28] in order to construct a
deadlock-free path via the physical channels (Dally’s theory)
or escape virtual channels (Duato’s theory). Second, SPIN
enables fully adaptive routing with one VC - the least VC-
cost theoretically possible for any buffered routing algorithm2.
This is a significant capability as VCs have high energy and
area overheads and using them solely to avoid/recover out of
rare events like routing deadlocks is expensive. Third, SPIN
does not place any injection or packet routing restrictions, and
is inherently livelock-free, unlike flow-control and deflection-
based schemes.

Dally’s theory and deflection routing avoid deadlocks from
forming, while Duato’s theory and flow-control routing have
been used for both actively avoiding deadlocks [28], [8] and
recovering out of them [24], [5]. We implement SPIN as a
recovery mechanism3, motivated by the premise that deadlocks
are extremely rare events (as we demonstrate next) and thus
placing resource reservations or resource-use restrictions (as
prior deadlock avoidance schemes do [4], [19]) for rare events
is counter-intuitive. We discuss overheads of our implementa-
tion of SPIN later in Sec. IV-D.

F. Routing Deadlock Occurrence in Mesh and Dragon-Fly

To illustrate that deadlocks are rare events, in Fig. 3 we plot
the minimum injection rates at which an on-chip 64-core mesh
and an off-chip 1024-node dragon-fly topologies with minimal
routing and UGAL routing respectively deadlock at least
once across different synthetic traffic patterns. The network
interface controllers (NIC) eject flits without any stalls. All
simulations were run for 100K cycles with 1-flit packets and

2We note, however, that for all deadlock-freedom schemes in Table I
including SPIN, more VCs may still be required to avoid protocol deadlocks.

3SPIN could be implemented as an avoidance scheme via proactive spin-
ning, though we do not explore that in this work.

3-VCs per input port. We observe that the minimum injection
rate across different traffic patterns at which these topologies
start to deadlock is at-least 10x the injection rate of real
applications [5] where network requests get filtered by L1 and
L2 caches. In addition, for some traffic patterns like tornado
and transpose, no deadlock is observed with minimal routing
on a Mesh topology even at 100% injection rate due to the
nature of these patterns.

III. THEORY BEHIND SPIN

In this section, we discuss how SPIN’s coordinated move-
ment based recovery guarantees deadlock freedom.
Definition 1: Deadlock. A cyclic dependence chain between

buffers, as depicted in Fig. 2(a).
Definition 2: Spin. A one hop movement of the deadlocked

ring via a synchronized movement.
Definition 3: Forward Progress. A hop that brings a packet

closer to its destination.
Theorem: In a deadlocked ring of length m, at most k

spins are required to resolve the deadlock, where k=m − 1
in case of minimal routing, and k= m × p + (m-1) in case
of non-minimal routing, where p is the maximum number of
times a packet can be misrouted in the non-minimal routing
algorithm.

Proof: Case I: Minimal Routing. With minimal routing,
every hop by definition leads to forward progress. Suppose we
start with a deadlocked ring of length m. After m spins the
packets would be back at their starting positions which would
contradict the definition of minimal routing. By the (m−1)th
spin, at least one of the packets will request for an output port
that is not part of the dependence chain, as shown in Fig. 2(c),
thereby breaking the deadlock.

Case II: Non Minimal Routing. In non-minimal routing, it
is possible for packets to continue requesting the same output
ports that lead to the deadlock, if more productive output
ports are congested. This is the problem of livelocks. To avoid
livelocks, non-minimal routing algorithms place a limit p on
the number of times a packet can be misrouted. For example,
in UGAL [36], p is 1. In the worst case, after m × p spins,
no more misroutes will be allowed, and the scenario will be
identical to Case I and will require at most m− 1 more spins
to resolve the deadlock.

Achieving Coordinated Movement: Any system imple-
menting SPIN needs the following three features:
I Deadlock Detection
II Coordinating a single time to perform the SPIN

III Performing the actual SPIN (i.e., simultaneous one-hop
forward movement by all packets in the deadlocked ring).
In small networks, it is not hard to design centralized imple-
mentations of these three features. For scalability, however, we
present a fully-distributed implementation next.

IV. AN IMPLEMENTATION OF SPIN

We present a distributed topology-agnostic implementation
of SPIN in this section, which works as is for both on-chip and

off-chip. It is possible to add topology-specific or on/off-chip
specific optimizations. We note that there are many possible
implementations of the SPIN theory, this is one.

Our implementation detects a deadlock using counters and
confirms its presence by sending out a probe that traces the
deadlock path. Once confirmed, a move msg is sent out to
convey the spin cycle to deadlocked routers. At the spin cycle,
all deadlocked routers transmit the deadlocked packets.

A. FSM for implementing the SPIN features

We add one counter with a finite state machine (FSM) at
design time to every router in the network topology. The
counter FSM has seven states as shown in the Fig. 4(a)
where the state transitions are based on the phase of the
deadlock recovery process. FSM transitions for the recovery
initiating router are shown in the upper-half of Fig. 4(a)
while the lower half shows the FSM transitions for other
routers in the deadlocked chain. The counter operates on two
thresholds (in cycles): tDD (DD = deadlock detection) which
is configurable, and tLL (LL = loop length) which is the length
of the deadlock loop this router is currently part of. To achieve
coordinated movement of packets for deadlock recovery, we
use four special messages (SMs): probe, move, probe move
and kill move. These SMs use the router’s regular links in
a bufferless routing fashion, at higher priority than normal
packets. As we will show later, this has negligible impact on
the latency and throughput of the network due to the SMs’
relative infrequency.

B. Walkthrough Example

We discuss the implementation using a walkthrough exam-
ple in Fig. 4(b)-(d). Each buffer dependence in the figure is
marked with the packet(s) that want to use it for the next hop.
As can be seen, there exists a deadlock due to the following
cyclic buffer dependency chain :
(A,B) ⇒ (C) ⇒ (E,F) ⇒ (G,H) ⇒ (I,J) ⇒ (K) ⇒ (A,B)
We discuss a Virtual-Cut-Through (VCT) implementation for
simplicity though a wormhole design is also possible with
some additional complexity.

The FSM starts in the SOFF state. When a new flit arrives at
a router (at any port other than the local ones), the counter state
is changed to SDD (DD here stands for “Deadlock Detection”)
with threshold set to tDD (configurable) and counter starts
pointing to the VC it occupies. If the flit leaves within the
threshold time, the counter pointer is incremented to point to
a non-empty VC in a round-robin manner and the counter is
reset and restarted. If all VCs at the router are idle, the counter
goes back to SOFF .

1) Phase I: Deadlock Detection: The counters at all the
nodes in the deadlock loop are in SDD (Fig. 4(b)). The counter
at node 5 expires in SDD as packet I does not leave within
the threshold time (Step 1). Node 5 then sends out a probe
message (Step 2) from the North output port (output port for
packet I) to confirm the presence of deadlock and rule out false
positives due to congestion. The counter is reset and restarted
with the same threshold tDD and state SDD.

At each router, if all VCs at the input port of the probe are
active, the probe is forked out of all unique output ports that
packets in the VCs at the input port are waiting on (except
ejection). If all VCs are not active, the probe message is
dropped. The fork operation creates identical copies, so all
the information already present in the probe is preserved. Each
forked copy is appended with the outport direction it leaves
the router from. In this case, packet K wants to go West while
packet Z wants to go East, hence the probe is forked out of
these output ports (Step 3). Node 2 appends ”W” to the probe
that goes left and ”E” to the probe that goes right.

At node 3, the probe is dropped (Step 4a) as both packets
M and N are waiting to get ejected. Clearly, packets waiting
for ejection cannot be a part of a cyclic buffer dependency
chain inside the network.

At nodes 1, 4, 6 and 7, the probe is forwarded out of the
south, south, east and north output ports (Step 4b), and the
port-ids S, S, E and N respectively are appended to it.

When node 5 (the recovery initiating router), receives the
probe back (Step 5), the dependence chain is confirmed and
the path acquired by the probe is latched in a special buffer
called the Loop Buffer (Step 6).

What if the counter at node 5, expires before the probe
returns or all the copies of the probe are dropped? The
counter at node 5 resets and restarts with the same threshold
(tDD) and state (SDD), and the FSM sends out a new probe.
This however cannot continue infinitely. If there is a deadlock,
the probe would return. Else things may be moving slow due
to congestion. Eventually, the congestion would clear up and
the flit would leave and the counter would point to a new VC.

What if another node in the dependency chain, sends out
a probe before/after it has received the probe from node 5?
The probe SM only acquires the dependency path and does not
alter the architectural state of the router. The state is altered
upon receiving other SMs (described next). Thus, there is no
functional correctness problem.

What if node 5 receives a probe from another node
after it has sent out a probe? The fact that a router sent out
a probe is neither reflected in the FSM state (FSM returns to
same state (SDD) after sending out the probe upon counter
expiry) nor is buffered anywhere in the router. Node 5 would
process this probe in the same way as its probe was processed
by other nodes i.e. fork it out of all buffer dependencies at the
input port and append corresponding outport ids.

2) Phase II: Communicating the SPIN time: The SPIN
scheme uses coordinated movement of deadlocked packets
for deadlock resolution. In essence, all routers in the cyclic
dependency chain move the deadlocked packets out of the
requested output ports in the same cycle together. This causes
all the deadlocked packets to spin in the direction of the
cyclic dependency chain simultaneously leading to one hop
movement of all deadlocked packets. The recovery initiating
router (node 5) sends out a SM (move SM) to convey the cycle
time for spin to the deadlocked routers.

After receiving the probe back (Fig. 4(c)), the FSM at node
5 transitions to SMove (Step 7) with the counter threshold set

(a) FSM in every router for implementing SPIN. (b) I: Deadlock Detection (Probe Traversal).

(c) II: Communicate SPIN cycle (Move Traversal). (d) III: The SPIN

Fig. 4: Walk-through Example and Router Microarchitecture of SPIN.

to tLL in cycles4 and sends out a move SM (Step 8). The
move message is guaranteed to return in this time unless it
is dropped (explained later). The move message is embedded
with the path of deadlock loop, the id of the sender and the
cycle time for the spin.

Upon receiving the move SM, each router freezes one VC
at the input port of the move SM that wants to use the output
port of the move SM (and hence is a part of the deadlock
dependency chain) by disabling switch allocation for it. The
packet in this VC will leave the router only during the spin
cycle. In addition, the counter FSM state is changed to SFrozen

with counter threshold set to count to the spin cycle. In the
walkthrough example, upon receiving the move SM, node 2
sets its is deadlock bit (Step 9a), latches the id of the sender
in the source-id buffer (Step 9b) and changes the FSM state
to SFrozen (Step 9c). Node 2 extracts the first port-id (West)
from the path embedded in the move SM and freezes packet
K (which wants to go West) (Step 9d) for the spin. At each
router, the first outport id is stripped away from the path
embedded in the move SM, which ensures that the outport of
the move SM corresponding to a node at which it is received is
always the first, thereby speeding up the forwarding circuitry.

The move SM is processed in a similar manner at nodes 1,
4, 6 and 7 with the move SM being forwarded out of South,
South, East and North outports respectively and packets A,

4The loop length (LL) is calculated from the path in the received probe.

C, E and G respectively being frozen for the spin (Step 10).
Upon receiving the move message (Step 11) node 5 sets its
is deadlock bit and freezes packet I.

How is the spin cycle decided? The spin cycle is cal-
culated as follows: (cycle in which move SM is sent out) +
2×(deadlock loop length in cycles)

Why is the spin cycle offset by 2×(deadlock loop length
in cycles) ? It takes loop length number of cycles for the
move SM to come back to its sender. The spin can be initiated
as soon as all of the routers have processed the move SM
and the confirmation has reached the sender. However, it may
happen that the move SM is dropped at a router that is not able
to honor the spin request (because the dependency detected
earlier by the probe no longer exists at this router or it has
accepted the move request from some other router). In this
case, other routers that have accepted the spin request need
to be informed to cancel the spin and unfreeze the packets.
This is done through another SM : kill move (see Sec. IV-B5)
which would take another loop length number of cycles to
traverse the loop.

Why is it necessary to freeze the packets? Rarely, due
to the dynamically changing buffer dependency scenarios due
to packet movement, some packet in the original detected
deadlocked dependency chain may be able to make forward
progress. This is true in cases when there are more than one
VCs per input port and due to clearing up of some other
congestion in the network some VC may free up enabling a

deadlocked packet to make forward progress. In this case, the
spin might push an invalid packet to some router or overwrite
some other packet. To prevent this, a valid packet that is a part
of the detected dependency chain is frozen.

3) Phase III: The SPIN: After receiving the move
SM back (Fig. 4(d)), the FSM at node 5 transitions to
SForward Progress and the counter is set to count to the spin
cycle (Step 12). The counters at all the deadlocked routers
expire together in the spin cycle (Step 13). Upon counter
expiry, routers push out the flits of their frozen packets on
the requested output links (Step 14) causing the deadlocked
dependency chain to spin.

This completes the SPIN recovery process and the routers
can now resume normal operation. However, a single spin may
not be enough to break the deadlock. In the framework, the
counter at some deadlocked router would expire again and
the recovery process would be repeated. To speed up the
case of deadlocks requiring multiple spins to get resolved, we
introduce an optimization.

4) Optimization for multiple spins: After one spin is com-
plete, the FSM at node 5 could potentially transition back to
SDD and wait for a timeout to send out a probe again in case
the deadlock still exists and additional spins are required. As
an optimization however, the FSM at node 5 transitions to
SProbe Move and sends out a probe move SM along the path
latched in the loop buffer at node 5 to check if the deadlock
still exists. The probe move performs the joint function of
probe and move, and instructs routers to freeze a deadlocked
packet (if the dependency still exists) till the spin cycle.5 If
the probe move returns to the sender, it confirms the continued
presence of deadlock and the spin is repeated.

In our walkthrough example, the probe move would get
dropped at node 4 as neither of the packets (A,D) want to
use the south outport. Thus, the deadlock due to previously
detected dependency chain has been resolved. Meanwhile, the
counter at node 5 expires while waiting for the probe move
to return and transition to Skill move (explained next).

5) Cancelling the SPIN (if required): If the move or
probe move SM gets dropped at a node, it indicates that the
previously detected dependency chain no longer exists. In this
case, routers that have processed the move or probe move
(before it was dropped) need to be informed to cancel the
SPIN. This is done through another SM, the kill move msg.

If the counter at the sender expires while waiting for
probe move/move to return, the FSM transitions to Skill move

and counter threshold is set to the length of deadlock path (in
cycles). In our walkthrough example, node 5 would send out
a kill move SM (embedded with the loop path and sender id)
along the path latched in the loop buffer to instruct routers to
unfreeze the frozen VCs and resume normal operation.

After receiving the kill move back, node 5 would clear
the path buffer, reset the is deadlock bit and resume normal
operation. The FSM at node 5 will transition to SDD if there

5Probe Move is not forked unlike the probe msg. It traverses the deadlock
path like the move SM.

are non-empty VCs at the router (which are not waiting to get
ejected) else to SOFF .

Our implementation provides distributed solutions for the
three requirements of SPIN theory. In addition, it introduces
additional optimization to speed-up deadlock recovery and
handles false-positives. Next, we discuss design choices re-
lated to the correctness of the implementation.

C. Correctness

The correctness of our SPIN implementation is guaranteed
because of two key constructs: (i) strict priorities among SMs
and routers, and (ii) the FSM. We describe these next.

1) Correctness due to Priority Orders: Priority among
SMs: The implementation discussed in the previous section
provides a distributed design where any router in the deadlock
chain can initiate deadlock recovery by sending out SMs.
As a result, a router may receive more than one SM in the
same cycle from its different ports if it is part of multiple
dependency chains. It is thus important to define a strict
priority order in processing of SMs to prevent races and
ensure that all routers in a deadlocked chain maintain a
consistent architectural state. Among the different SM classes,
the priority is defined as: probe move > move or kill move
> probe > flit .

Also, if the router is a part of multiple dependency chains,
it may receive probes from all such chains in the same cycle.
In this case, we need to decide which probes to process (in
case multiple want to use the same output port). This rule is
given by the “principle of rotating priority”.

Principle of rotating priority among routers: For a
network with N routers, the system starts with router N
having the highest priority, down to router 1 having the lowest
priority. After an epoch, the priorities are changed in round-
robin manner. The length of epoch is critical. Too large value
would delay deadlock resolution as probes from routers in
the deadlock loop would get dropped by probes from higher
priority nodes (not part of the deadlock loop) which may enter
the loop due probe forking and keep looping due to the buffer
dependency while too small of a value wouldn’t guarantee
deadlock resolution for arbitrary length deadlock loops.

For the SPIN scheme, we choose (4 × tDD) as the length
of the epoch. The round-robin priority update guarantees that
every router in the network has the highest priority eventually
and the epoch guarantees that the router will have highest
priority long enough to detect a deadlock, send out a probe and
receive it back, ensuring functional correctness. It is important
to note here that the rotating priority rule does not place a
restriction on when routers can send a probe. Any router can
send out a probe msg. upon counter expiry. The priority rule
is used to decide which probe can use a given output port in
case of contention.

What if deadlock detection (and sending of probe)
happen near the end of epoch? Suppose the epoch for this
router starts at cycle 0 and the router sends a probe in (3
× tDD + k) cycle where 0 <k <tDD. The next epoch for
this router will begin at 4 × N × tDD cycle where N is the

Fig. 5: Examples of Special cases.

number of routers in the network. Since the router sends a
probe every tDD cycle, the first probe in the next epoch will
be sent in cycle 4 × N × tDD + k. This probe has the highest
priority for 3 × tDD cycles. For appropriate choice of tDD

(such that the longest loop is covered)6, we can guarantee that
the probe msg. will be able to return to its sender without
getting dropped due to contention.

It is not necessary, however, for the router to have the
highest priority to solve deadlock. If its probe returns without
facing contention from other probes in the network (common
case), the recovery process can be started. Also, any router in
the deadlock whose probe comes back can start the recovery.

What happens if two or more nodes in a deadlocked
cycle detect and send out probes? A probe is dropped at
a router if its dynamic priority is greater than the dynamic
priority of the sender. Thus, only the probe from the node
with highest dynamic priority in the deadlocked loop will be
able to complete the loop.

Can a probe loop around infinitely due to buffer
dependency? No, dynamically changing router priorities will
make sure it gets dropped at some higher priority router.
This however doesn’t affect functional correctness as discussed
before (principle of rotating priority and length of epoch).

Why do we need to fork the probe? Can we not drop the
probe if all VCs at the input port do not want to use the
same output port? There may be buffer dependency scenarios
where one buffer dependency cycle may depend on another.
In the walk-through example, if the probe message were to be
dropped at node 4 and there was such a dependency cycle, the
deadlock would never get resolved.

2) Correctness due to FSM: The FSM (Fig. 4(a)) handles
all possible race conditions that might occur due to routers
independently sending out SMs at various times. Here, in the
interest of space, we discuss some interesting ones.

What if two deadlocked chains share routers? Multiple
deadlocks can be resolved in parallel if they do not share
routers. Otherwise they are resolved serially depending on
which loop’s move SM reached the common routers first. We
show such a scenario in Fig. 5(a). There are 2 deadlock chains

6For a 8x8 mesh, with 1-cycle link and 1-cycle router, tDD of 128 is
enough. Alternatively, the length of the epoch can be increased to n × tDD

(n>4) which would require lower tDD

with routers K, M and E being the common routers. Router
B and Router H, detect the anti-clockwise and clockwise
deadlocks respectively and send out a probe.

Case I: Both probes arrive at the same cycle at the common
router E from inports West and East respectively and request
the same outport (North). The probe from router H is dropped
at Router E as the dynamic priority of Router B (6) is greater
than the dynamic priority of Router H (4) in the cycle at which
probes reach Router E. Consequently, probe from Router B
completes the loop and returns to its sender (Router B), which
then sends out the move SM and performs the spin. The anti-
clockwise deadlock gets resolved first in this scenario.

Case II: Both probes arrive at different cycles at the
common router E. In this case, both probes will individually
detect their respective cycles and return to routers H and B.
Both routers will send out a move request. Whichever move
request reaches router E first (say the one from H) will set the
state to SFrozen, latch the source id of this move SM, and set
is deadlock to 1 in routers E, M, K, and so on. When the
second move SM eventually arrives at E, it will be dropped
since is deadlock is set, and the source-id of this SM differs
from what is latched, which is H. The clockwise deadlock
through H will get resolved first in this case. Meanwhile, the
FSM at router B will timeout without receiving its own move
SM back, and it will send out kill move SMs to defreeze
routers C and D. kill move will get dropped at E because
of the source-id mismatch.

In either of these cases, once the first deadlock is resolved,
either the second one will implicitly get resolved due to packet
movement, or will explicitly lead to new probes and moves
being sent out for resolution.

Folded/Non-Uniform cycles (e.g. Deadlock in a Figure
“8”) ? Such a scenario is depicted in Fig. 5(b). The design
would view this as a single dependency chain (which it is).

Case I: Any router other than the cross-over router (Router
E), say Router C, initiates the recovery by sending out a probe.
When this probe reaches the South port of Router E, it will be
sent out of the North port (not forked) since all flits in VCs
at South port of Router E want to go North. Again, when this
probe arrives at Router E from the East port, it will be sent
out of the West port. A key difference from Fig. 5(a) is that
the same move SM will circle back to router E twice, but will
not be dropped the second time as its source-id is the same
as the one that was latched the first time this move arrived.

Case II: The cross-over router, Router E, initiates the
recovery by sending out a probe from the North outport. When
this probe returns to Router E from the East port, it will not
process it and send it out of the West outport since the probe
didn’t come back from the port the counter is pointing to (the
South port). When the probe returns from the South port, the
recovery process will proceed as discussed in Sec. IV-B.

In both the cases, Router E will move out both the frozen
packets P1 and P2 from the North and West outports respec-
tively in the SPIN cycle.

Can a node send a probe, followed by a move, and then
receive a copy of its probe back? This means that there are

two dependence cycles that this router is part of, in the same
direction. Since the move for the first one has been sent, the
second probe will be dropped. Eventually the move will come
back, and the spin will happen to resolve the first deadlock.
After that the timeout counter will send out a new probe and
resolve the second deadlock if it still exists.

3) Robustness: Can the routers/links have different de-
lays? Can it handle multiple clock domains in on/off-chip
networks? Yes. The theory only requires that all routers in the
dependency chain start the SPIN together but not necessarily
complete the SPIN at the same time. To calculate this common
start time we only need the total loop delay (and not the delay
of individual routers/links). Flits at routers with higher delays
will take longer to show up at the downstream router. The
space for incoming flits (due to SPIN) at the longer delay
router is being created as flits are being moved out every cycle
and the SPIN start time is same. If there is a different in rate
due to difference in clock domain frequencies, cross-domain
FIFOs are usually present between two such routers to smooth
the flow/rate. In such designs, since the notion of global time
is different, rather than specifying the exact cycle number in
the move SM, the relative number of ticks after which the
move has to be performed will be set. In off-chip systems,
each SM (and the flits) will have to go through SERDES at
each hop, which will just show up as increased loop delay
without breaking the design.

D. Microarchitecture & Overheads

One of the key requirements for our implementation of
SPIN to work is deterministic traversal delays for the SMs.
The probe return time determines the length of the deadlock
path; all FSM counter thresholds (except tDD which is con-
figurable) such as the spin cycle are derived directly from the
length of the deadlock path. The move SM has to return within
the the same time as the probe did, or triggers a kill move, as
discussed in Sec. IV-B5. Instead of using a separate dedicated
side-band buffered network for these SMs, we provide these
guarantees by the following features:

• No additional links. All SMs use the same links as regular
flits and get higher priority over regular flits.

• Bufferless Traversal. The SMs are not buffered anywhere.
Upon contention for the same output link, there is a strict
priority order to decide which SM uses the output link
(Sec. IV-C1), and all other SMs are dropped. The FSM
which initiated the SM is robust to handle timeouts and
retransmissions (Sec. IV-C2).

• Distributed. The recovery is completely distributed with
no central coordinator limiting the timing.

Table II lists the additional modules required over a tra-
ditional on-chip/off-chip router. Our distributed SPIN router
implementation adds one Loop Buffer (Sec. IV-B1) on the
control path. We note, however, that we do not add any buffers
on the datapath, making the loop buffer conceptually different
from escape channels/buffers on the datapath [24], [5], [7],
[25]. We quantify these overheads in Sec. VI-E3.

TABLE II: SPIN Router Modules
Module Description
FSM Manages SM traversals and Correctness (Figure 4(a)

and Section IV-C2).
Probe
Manager

Scans the VCs at the input port to find the set of
unique output ports that flits in the VCs are waiting
for and forks the received probe out of all of them.

Move
Manager

Processes the move, kill move and probe move mes-
sages (Section IV-B) based on the FSM state.

Loop
Buffer

Store the deadlock path and needs to be
log2(Router Radix) × N bits, where N is the
no. of routers in the topology.
For a 64-core mesh, this buffer would be 1-flit deep
assuming 128-bit links.

V. THE FAVORS ROUTING ALGORITHM

SPIN enables true one-VC fully adaptive deadlock free
routing for any topology7. To exploit this powerful capability
of SPIN, we propose a novel Fully Adaptive One-VC Routing
with Spin (FAvORS). The algorithm has two components :
minimal adaptive and non-minimal adaptive routing.

Minimal Adaptive Routing: A packet is routed from the
source node to the destination using only minimal paths. At a
given router in the path, the router finds all the minimal paths
to the destination. If one or more minimal paths have a free
VC at the next hop router, the current router randomly chooses
any of the minimal path output ports. If none of the minimal
path outports have a free VC, the router selects the outport
corresponding to the VC (at the next hop) that has been active
for the least number of cycles (since the last time it became
free). This information can be obtained cheaply from the VC
credit. It is important to note here that a packet might switch to
different minimal paths during routing due to outport selection
but it is always routed minimally.

Non-minimal Adaptive Routing: Here the source router
can choose between minimal adaptive routing and routing non-
minimally through an intermediate node. The source finds all
minimal paths to the destination which have a free-VC at the
next hop and randomly selects one. If none of the minimal
outports have a free-VC, the source node selects a random
intermediate node. If Hmin denotes the minimal path hop
count, Hnon−min the non-minimal path hop count (from the
source to destination via the intermediate node), tactive−min

(tactive−non−min) the minimum value of no. of cycles the
next-hop VC has been active for8, among all the minimal
(non-minimal) paths, then the source router uses non-minimal
routing via intermediate node if:
Hmin + tactive−min > Hnon−min + tactive−non−min

Else it would use minimal adaptive routing. The non-minimal
routing has two phases : route to intermediate node from the
source and then from intermediate node to the destination.
In each of the phases, the packet is routed using the minimal
adaptive routing algorithm described above. As the packet gets
mis-routed only once, the routing is livelock free. The decision

7Traditional adaptive routing algorithms either require additional VCs for
full adaptivity or routing restrictions, reducing adaptivity.

8If there is an idle VC then tactive−non−min=0. Also, the VC active
time is relaxed by the buffer turn-around time.

to route minimally or non-minimally is only made once at the
source router.

Algorithm Intuition: The scheme favors minimal routing
due to the latency overhead of non-minimal routing. Non-
minimal paths should only be considered in a heavily loaded
network. If there exists a free-VC at the outport of the minimal
path, it indicates that the network is lightly loaded and hence
the algorithm routes minimally.

The algorithm uses “no. of cycles for which the outport VC
has been active” as a proxy for port contention at the next
router. If there is no contention, the VC at next hop router
would return to the idle state fast. Further, to spread the traffic
uniformly and prevent routing hotspots, the intermediate node
is chosen randomly.

TABLE III: Network Configurations
Topology Design Adaptive Minimal Theory Type
1024- UGAL Full No Dally Avoidance
node Minimal No Yes SPIN Recovery
Dragonfly FAvORS NMin Full No SPIN Recovery

Westfirst Part Yes Dally Avoidance
8x8 2-D EscapeVC Full Yes Duato Avoidance
Mesh Static-

Bubble [5]
Full Yes Flow-

Ctrl
Recovery

FAvORS Min Full Yes SPIN Recovery

VI. EVALUATION

A. Simulation Methodology

SPIN is a generic framework that can be used to provide
freedom from routing deadlocks for any topology with any
routing algorithm. We quantify its performance by comparing
with state of the art deadlock free routing schemes on two
popular topologies: a 1024 node off-chip dragon fly [15] with
a group size of 8, and on-chip 8x8 mesh. All simulations are
carried out using the cycle-accurate gem5 [37] full-system
simulator with Garnet2.0 [38] network model. The mesh
has 1-cycle routers and 1-cycle links; the dragon fly has
1-cycle routers [15], 1-cycle intra-group, and 3-cycle inter-
group links. Both synthetic and real traffic is run over a
directory coherence protocol that has 3 virtual networks to
avoid protocol deadlocks; each vnet has one or more VCs
as specified in the name of the configuration in each plot.
For synthetic traffic, a mix of 1-flit (control) and 5-flit (data)
packets were injected. The default value of tDD is 128.

B. Baselines

Table III lists the state of the art baseline designs along with
the type (Deadlock Avoidance/ Recovery) and theory they are
based on. For off-chip 1024-node Dragon-fly topology, we use
a deadlock avoidance scheme with UGAL routing that requires
a change of VC every time a global link is traversed [15].
We quantify the performance of our FAvORS algorithm on
Dragon-fly by comparing it with UGAL and minimal routing.

For 8x8 mesh, we choose a mix of avoidance and recovery
schemes. WestFirst design uses west-first routing in all VCs
while escape-VC design uses west-first routing in the escape
VC and fully adaptive routing in rest. Static Bubble [5],
a recently proposed deadlock recovery scheme for Mesh,

uses adaptive routing in all VCs and strategically places
additional buffers that are used for recovery. We note that the
performance of other recovery schemes such as DISHA [24]
would be similar to or worse than Static Bubble, as DISHA
supports only one active recovery at a time besides having
other overheads like token capturing, thus these techniques
are not compared against directly. We also compare minimal
version of FAvORS routing algorithm with all these baselines.

C. 1024-Node Off-Chip Dragon-Fly

Performance. Fig. 6 plots the latency vs. injection rate for
dragon-fly topology for a suite of synthetic traffic patterns with
a mix of 3-VC and 1-VC configurations from Table III.

In the 3VC version, we use the UGAL[36] routing al-
gorithm, which is the most popular deadlock-free adaptive
routing algorithm used commercially for dragon-fly topologies
in HPC systems [39]. The baseline design with UGAL uses
Dally’s deadlock freedom theory and requires packets to
change the VC on each use of the global/inter-group link to
avoid routing deadlocks [15]. UGAL with SPIN allows packets
to freely use any available VC. At very low loads (0.01) both
designs perform identically. However, as SPIN provides more
routing flexibility and lacks VC-use restrictions, its saturation
throughput is 50%, 20% and 83% higher compared to the
deadlock avoidance baseline with bit complement, transpose
and tornado traffic patterns[40] respectively. The effect of
VC-use restriction on saturation throughput can be visualized
better with the neighbor traffic pattern where router i sends
all of its traffic to only router i+1. Here despite the presence
of 3-VCs, the traffic in the baseline design can only use one-
VC (for the minimal path which will be the dominant routing
method for this traffic pattern) thereby severely limiting the
throughput. Consequently, SPIN provides 25% improvement
in saturation throughput.

In the 1-VC version, UGAL cannot be used as it requires
at least 3 VCs. We run the fully-adaptive non-minimal version
of the FAvORS algorithm, and contrast it against a minimal
routing algorithm. The latter also uses SPIN for deadlock
freedom9. FAvORS-NMin outperforms minimal routing by
offering 78% and 62% higher throughput with tornado and bit-
complement traffic patterns respectively. The higher through-
put is achieved as FAvORS-NMin is able to adaptively route
around loaded minimal paths. With uniform random traffic,
FAvORS-NMin achieves a 5% improvement in saturation
throughput as all links are almost equally loaded. With trans-
pose and neighbor traffic patterns, FAvORS-NMin always
picks the minimal path (see Sec. V) and thus the performance
of both designs is identical.

Performance/Watt and Performance/Area. A key take-
away from Fig. 6 is that FAvORS provides the same low-load
latency and similar throughput as UGAL with 3VCs. In terms
of cost, the 1-VC dragon-fly router is 53% lower area and
55% lower power than a 3-VC version, when implemented in
Nangate 15nm opencell library [41].

9No other truly one-VC deadlock-free routing designs exist. State of the art
deadlock-free routing schemes for dragon-fly require a minimum of 2 VCs.

Fig. 6: Network Performance of 1024-node Dragon Fly (configs described in Table III).

Fig. 7: Network Performance of 8x8 2-D Mesh (configs described in Table III)

Fig. 8: Normalized network EDP with PARSEC and Link
Utilization with Uniform Random Traffic for 2-D Mesh.

Fig. 9: False positives in SPIN as a function of number of VCs
in 2-D Mesh and Dragon Fly.

In summary, SPIN enables high-performance deadlock-free
routing at almost half the area and power cost of conventional
deadlock avoidance techniques in high-radix HPC topologies
like Dragon-Fly.

D. 8x8 On-Chip 2-D Mesh.

Performance. Fig. 7 plots the latency versus injection rate
for a 8x8 mesh for a suite of synthetic traffic patterns with a
mix of VC configurations from Table III.

Fig. 10: Area overhead of baseline designs with the SPIN
implementation normalized to the West-first (deadlock avoidance)
design.

In the 3-VC designs, minimal adaptive with SPIN outper-
forms the other 3 VC baselines offering higher saturation
throughput as it provides adaptive routing for all 3 VCs and
does not place any routing restriction (west-first) or VC use
restriction (escape-VC). Quantitatively, SPIN provides 79%,
16% and 68% higher saturation throughput than west-first
routing baseline and 6%, 18% and and 8% improvement in
saturation throughput compared to the escape-vc design with
bit reverse, uniform random and transpose traffic patterns
respectively. With tornado traffic pattern, each router sends
all of its traffic to a node half-way across the x-dimension.
Minimal adaptive routing reduces to west-first routing for this
traffic pattern for most packets and thus the performance of
all three designs is almost identical. Compared to the Static
Bubble flow-control based deadlock recovery scheme, SPIN
provides 10% and 14% higher throughput for transpose and
bit rotation respectively. The primary reason is that one of the
VCs in Static Bubble is reserved for deadlock recovery and
cannot be used during normal operation.

In the 1-VC designs, FAvORS-Min provides 80%, 20% and
18% higher saturation throughput with transpose, bit-reverse
and bit-rotation traffic patterns respectively. With neighbor

(not shown) and tornado traffic patterns minimal adaptive
routing reduces to west-first routing; thus both designs offer
identical performance. West-first routing shows a marginal
improvement (3%) in saturation throughput over the adaptive
routing algorithm with uniform random traffic.

Performance/Watt and Performance/Area. Fully-adaptive
FAvORS-Min with 1-VC enabled by SPIN matches in through-
put with EscapeVC 2VC for transpose and tornado, and is
only 10% worse in throughput than a 3-VC West-first design
for bit rotation. Since Escape VC offers comparable perfor-
mance to SPIN for on-chip meshes, we compared the two with
full-system simulations with the PARSEC [42] benchmark
suite. Fig. 8(a) plots the network EDP, normalized to Escape
VC. MinAdaptive 2VC SPIN has a 18% lower EDP, on
average, compared to EscapeVC 3VC as it provides the same
performance with fewer resources. Full system runtime was
identical with both the designs.

The 1-VC mesh router is 52% (36%) lower area and
50% (34%) lower power than a 3-VC (2-VC) router when
implemented in Nangate 15nm opencell library [41].

In summary, SPIN provides better or similar performance
at 30-50% lower area and power costs for on-chip mesh.
Moreover, since SPIN can handle any arbitrary topology, it
has high-applicability in the domain of on-chip resiliency and
NoC power gating.

E. Accuracy and Overheads of SPIN

1) False Positives: Deadlock resolution in SPIN is carried
out without requiring the routers to have a global view of
the network which contributes to the scheme’s scalability.
However due to the absence of a global view, routers may send
out SMs due to congestion when there is no real deadlock.
These are known as false positives. As discussed in Sec. IV-C
routers are robust against such false positives and drop them.
Fig. 9 plots the number of false positives and number of spins
as a function of injection rate with uniform random and bit-
complement10 patterns for mesh and dragon-fly respectively.

For the mesh topology, 20% of the spins on average are
false positives for the 3-VC design. However, the number
of false positives are zero up to 10x the injection rate of
real applications [42], [5]. For the 1-VC case, there are no
false positives for any injection rate. In the case of dragon-fly
topology, the false positives are very close to zero for both 1-
VC and 3-VC designs at all injection rates. An interesting
insight offered by this graph is that the number of false
positives fall significantly in the 1-VC design. This is because
in the multi-VC scenario, VCs at the input port of the router
may be part of different inter-dependent dependency chains.
A probe SM that arrives at such a router will be forked out of
multiple output ports. Often, clearing one of the chains allows
the others to make forward progress as well. Consequently,
all copies of the probe SM (except one) get dropped. In the
1-VC design, probe-forking cannot happen and consequently
the false positives are zero.

10Uniform random traffic did not deadlock for dragon-fly topology with
3-VCs (even at high injection rate) due to the abundant path diversity.

The probability of deadlocks decreases with more VCs [7].
This is shown by the number of spins for 1-VC and 3-VC
design with dragon-fly topology where the 3-VC design has
43% less spins on average than the 1-VC design. The same
trend is reflected for mesh topology at low and medium loads
(up to 0.2). At high loads, more spins are observed for the
3-VC design. This is explained by the difference in routing
choices available in the two designs. The 3-VC case allows for
better exploitation of path diversity. Consequently, the packets
may take any turns leading to higher probability of deadlock.
In the 1-VC design, packets are unable to exploit the path
diversity in a heavily saturated VC-limited network. Thus,
their paths contain less turns (like XY routing) leading to lower
probability of deadlock.

2) Link Utilization: Fig. 8(b) plots the link utilization for
flits and special msgs. and the link idle time with uniform
random traffic for the mesh topology with 3-VCs at three
different injection rates : 0.01 (low load), 0.2 (medium load)
and 0.5 (high load). The design uses minimal adaptive routing
with SPIN. At low load, links are mostly idle and no special
msgs. are sent out. At medium load, the flit link utilization
goes up to 60% with the probe utilization being around 4%.
The probe utilization remains almost the same at high load
with the flit utilization dropping to 33% due to increased
frequency of deadlocks at high load. It is interesting to note
the increase in link idle time in the high load case indicating
that the links are mostly idle in case of frequent deadlocks
and can thus be used by the SM. All SMs have less than
1% link utilization combined at both medium and high loads
which indicates that the spin is carried out only in the case of a
deadlock. The combined link utilization of SMs never exceeds
5% at any load; thus the links are either idle or being used by
flits at almost all times.

3) Area Overhead: We implemented the SPIN modules
(Table II) in RTL over a 1-cycle router obtained from a NoC
RTL generator [12], and synthesized the design using 15nm
Nangate standard cells [41]. The area overheads compared
to alternate designs are shown in Figure 10. SPIN has 4%
area overhead compared to the West-first scheme which is
significantly less than 100% and 10% area overhead for
Escape-VC [7] and Static Bubble [5] designs respectively. We
believe that a 4% area overhead is a highly acceptable trade-off
for the routing flexibility and higher saturation throughput that
SPIN provides compared to Dally-based deadlock avoidance
schemes in use today. SPIN has similar area overheads as other
deadlock recovery schemes, such as DISHA [24] and Static
Bubble [5] which also use an additional central buffer in each
router, but provides better performance as discussed before.

VII. CONCLUSION

This work presents a novel deadlock freedom framework
called SPIN. SPIN views deadlocks as a lack of coordina-
tion between routers in a cyclic dependence loop, making
it fundamentally different from all prior theories that have
viewed deadlocks as a lack of buffer resource problem thereby

requiring routing restrictions or additional buffers or conser-
vative injection restrictions. We also present a low-cost, fully-
distributed microarchitecture for detecting a deadlock and
effectuating a one (or more) hop movement of a deadlocked
ring in any topology. We also enable, for the first time, a
fully adaptive routing algorithm that can work with just 1
VC by leveraging SPIN. Evaluations over a 1024-node off-
chip Dragon-Fly and a 64-node on-chip mesh demonstrate that
SPIN can provide comparable performance to state-of-the-art
deadlock-free routing algorithms at 35-52% lower area and
38-55% lower power.

REFERENCES

[1] A. Singh et al., “Jupiter rising: A decade of clos topologies and central-
ized control in google’s datacenter network,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, (New York, NY, USA), ACM, 2015.

[2] A. Roy et al., “Inside the social network’s (datacenter) network,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, (New York, NY, USA), ACM,
2015.

[3] D. Chen et al., “The ibm blue gene/q interconnection network and
message unit,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’11, (New York, NY, USA), ACM, 2011.

[4] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, Sept. 2007.

[5] C. J. Glass et al., “The turn model for adaptive routing,” J. ACM, vol. 41,
Sept. 1994.

[6] A. Ramrakhyani and T. Krishna, “Static bubble: A framework for
deadlock-free irregular on-chip topologies,” in 2017 IEEE International
Symposium on High Performance Computer Architecture, HPCA, 2017.

[7] W. J. Dally et al., “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Trans. Comput., vol. 36, May 1987.

[8] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, Dec. 1993.

[9] C. Carrion et al., “A flow control mechanism to avoid message deadlock
in k-ary n-cube networks,” in Proceedings of the Fourth International
Conference on High-Performance Computing, HIPC ’97, (Washington,
DC, USA), IEEE Computer Society, 1997.

[10] T. Moscibroda et al., “A case for bufferless routing in on-chip networks,”
in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, ISCA ’09, (New York, NY, USA), ACM, 2009.

[11] A. Singla et al., “Jellyfish: Networking data centers randomly,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, (Berkeley, CA, USA), USENIX
Association, 2012.

[12] L. Chen et al., “Power punch: Towards non-blocking power-gating of
noc routers,” in 21st IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA, pp. 378–389, 2015.

[13] H. Kwon and T. Krishna, “Opensmart: Single-cycle multi-hop noc gen-
erator in bsv and chisel,” in Proc of the IEEE International Symposium
on Performance Analysis of Systems and Software, IEEE, 2017.

[14] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th International Symposium
on Computer Architecture (ISCA), 2017.

[15] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in Computer Architecture
(ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on,
IEEE, 2016.

[16] J. Kim et al., “Technology-driven, highly-scalable dragonfly topology,”
in Proceedings of the 35th Annual International Symposium on Com-
puter Architecture, ISCA ’08, (Washington, DC, USA), IEEE Computer
Society, 2008.

[17] M. Ebrahimi et al., “A new theory on forming acyclic channel depen-
dency graph for the design of deadlock-free networks,” in Proceedings
of the 44th International Symposium on Computer Architecture (ISCA),
2017.

[18] C. Xiao et al., “Dimensional bubble flow control and fully adaptive rout-
ing in the 2-d mesh network on chip,” in 2008 IEEE/IPIP International
Conference on Embedded and Ubiquitous Computing, 2008.

[19] M. Garcia et al., “On-the-fly adaptive routing in high-radix hierarchical
networks,” in Proceedings of the 2012 41st International Conference on
Parallel Processing, ICPP ’12, (Washington, DC, USA), IEEE Computer
Society, 2012.

[20] K. Aisopos et al., “ARIADNE: agnostic reconfiguration in a discon-
nected network environment,” in International Conference on Parallel
Architectures and Compilation Techniques, PACT, 2011.

[21] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Trans. Parallel Distrib. Syst., vol. 11, July 2000.

[22] W. J. Dally et al., “Deadlock-free adaptive routing in multicomputer
networks using virtual channels,” IEEE Trans. Parallel Distrib. Syst.,
vol. 4, Apr. 1993.

[23] P. Gratz et al., “Regional congestion awareness for load balance
in networks-on-chip,” in 14th International Conference on High-
Performance Computer Architecture (HPCA-14 2008),, 2008.

[24] S. Ma et al., “Dbar: An efficient routing algorithm to support multiple
concurrent applications in networks-on-chip,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture, ISCA ’11,
(New York, NY, USA), ACM, 2011.

[25] K. V. Anjan et al., “An efficient, fully adaptive deadlock recovery
scheme: DISHA,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture, ISCA, 1995.

[26] Y. H. Song et al., “A new mechanism for congestion and deadlock
resolution,” in Proceedings of the 2002 International Conference on
Parallel Processing, ICPP ’02, (Washington, DC, USA), IEEE Computer
Society, 2002.

[27] P. Lopez et al., “A very efficient distributed deadlock detection mecha-
nism for wormhole networks,” in Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, 1998.

[28] J. Duato et al., “A general theory for deadlock-free adaptive routing
using a mixed set of resources,” IEEE Trans. Parallel Distrib. Syst.,
vol. 12, Dec. 2001.

[29] A. Samih et al., “Energy-efficient interconnect via router parking,” in
19th IEEE International Symposium on High Performance Computer
Architecture, HPCA, 2013.

[30] V. Puente et al., “The adaptive bubble router,” J. Parallel Distrib.
Comput., vol. 61, Sept. 2001.

[31] L. Chen et al., “Worm-bubble flow control,” in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), HPCA ’13, (Washington, DC, USA), IEEE Com-
puter Society, 2013.

[32] L. Chen et al., “Critical bubble scheme: An efficient implementation
of globally aware network flow control,” in 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2011,, 2011.

[33] C. Xiao et al., “On distributed communication networks,” in 1964 IEEE
Trans. on Communications.

[34] C. Fallin et al., “Minbd: Minimally-buffered deflection routing for
energy-efficient interconnect,” in 2012 Sixth IEEE/ACM International
Symposium on Networks-on-Chip (NoCS),, 2012.

[35] C. Fallin et al., “Chipper: A low-complexity bufferless deflection router,”
in Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, HPCA ’11, (Washington, DC,
USA), IEEE Computer Society, 2011.

[36] S. A. R. Jafri et al., “Adaptive flow control for robust performance and
energy,” in Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, (Washington, DC, USA),
IEEE Computer Society, 2010.

[37] A. Singh, Load-balanced routing in interconnection networks. PhD
thesis, Stanford University, 2005.

[38] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, Aug. 2011.

[39] N. Agarwal et al., “GARNET: A detailed on-chip network model inside
a full-system simulator,” in ISPASS, 2009.

[40] “Cray XC Series Interconnect and Network Technology,” Cray.
[41] “Garnet synthetic traffic,” gem5.org.
[42] M. Martins et al., “Open cell library in 15nm freepdk technology,” in

Proceedings of the 2015 Symposium on International Symposium on
Physical Design, ACM, 2015.

[43] C. Bienia et al., “The PARSEC benchmark suite: Characterization and
architectural implications,” in PACT, 2008.

	Introduction
	Background and Related Work
	Dally's Theory
	Duato's Theory
	Flow Control
	Deflection Routing
	Comparison with SPIN
	Routing Deadlock Occurrence in Mesh and Dragon-Fly

	Theory behind SPIN
	An Implementation of SPIN
	FSM for implementing the SPIN features
	Walkthrough Example
	Phase I: Deadlock Detection
	Phase II: Communicating the SPIN time
	Phase III: The SPIN
	Optimization for multiple spins
	Cancelling the SPIN (if required)

	Correctness
	Correctness due to Priority Orders
	Correctness due to FSM
	Robustness

	Microarchitecture & Overheads

	The FAvORS Routing Algorithm
	Evaluation
	Simulation Methodology
	Baselines
	1024-Node Off-Chip Dragon-Fly
	8x8 On-Chip 2-D Mesh.
	Accuracy and Overheads of SPIN
	False Positives
	Link Utilization
	Area Overhead

	Conclusion
	References

