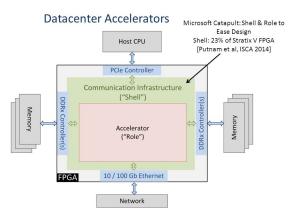
FastTrack: Leveraging Heterogeneous FPGA Wires to Design Low-cost High-performance Soft NoCs

Nachiket Kapre + Tushar Krishna nachiket@uwaterloo.ca, tushar@ece.gatech.edu

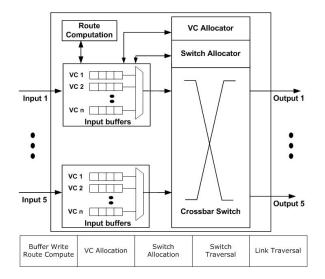
Claim

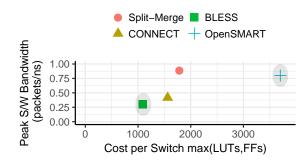
FPGA overlay NoCs designed to exploit interconnect properties of the FPGA fabric can surpass existing state-of-the-art NoCs by:

- 2.5–2.8× throughput \uparrow
- ▶ 2.2× energy ↓
- ▶ at 2.5× LUT cost ↑

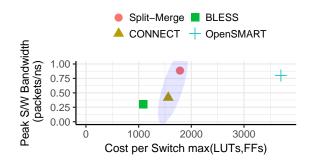

Xilinx Virtex-7 485T FPGA, 8×8 system size, synthetic+real-world traffic.

Context

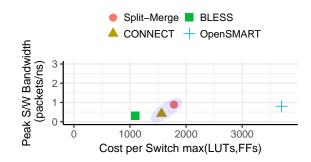


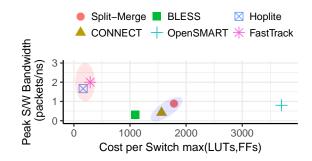

- FPGAs finding comfortable home in datacenters
 - Offloading compute intensive workloads to the FPGA
 - Energy-efficiency, fast coupling to networking
- Common Infrastructure: NoCs for apps + system IO

Context



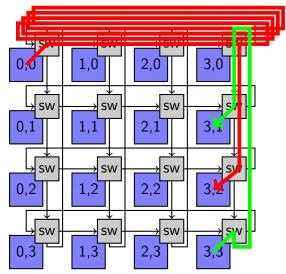
- FPGAs finding comfortable home in datacenters
 - Offloading compute intensive workloads to the FPGA
 - Energy-efficiency, fast coupling to networking
- Common Infrastructure: NoCs for apps + system IO




- ► ASIC clones transplanted onto FPGAs fare poorly! → expensive buffers, virtual channels, multi-ported switches
- Even contemporary FPGA routers are expensive and slow
- ► **FastTrack**: Deflection-routing + Bufferless + Torus

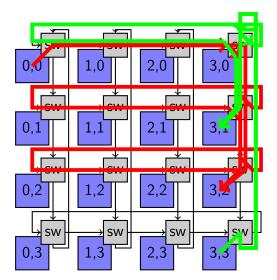
- ► ASIC clones transplanted onto FPGAs fare poorly! → expensive buffers, virtual channels, multi-ported switches
- Even contemporary FPGA routers are expensive and slow
- ► **FastTrack**: Deflection-routing + Bufferless + Torus

- ► ASIC clones transplanted onto FPGAs fare poorly! → expensive buffers, virtual channels, multi-ported switches
- Even contemporary FPGA routers are expensive and slow
- ► **FastTrack**: Deflection-routing + Bufferless + Torus



- ► ASIC clones transplanted onto FPGAs fare poorly! → expensive buffers, virtual channels, multi-ported switches
- Even contemporary FPGA routers are expensive and slow
- ► **FastTrack**: Deflection-routing + Bufferless + Torus

Qualitative Comparison of FPGA NoC Routers


Router	Cost									
	Xbar+Arb	Buffers	VCs							
OpenSMART	X	X	X							
BLESS	×	\checkmark	\checkmark							
CONNECT	×	X	X							
Split-Merge	X	X	1							
Hoplite	\checkmark	1	✓							

Quick Tutorial on Hoplite

Hoplite: A Deflection-Routed Directional Torus NoC for FPGAs, TRETS 2017 Hoplite: Building Austere Overlay NoCs for FPGAs, FPL 2015

Quick Tutorial on HopliteRT

HopliteRT: An Efficient FPGA NoC for Real-Time Applications, FPT 2017

Qualitative Comparison of FPGA NoC Routers

Router	Cost									
	Xbar+Arb	Buffers	VCs							
OpenSMART	X	X	X							
BLESS	×	\checkmark	\checkmark							
CONNECT	×	X	X							
Split-Merge	X	X	1							
Hoplite	\checkmark	1	✓							

Qualitative Comparison of FPGA NoC Routers

Router	(Cost	Perf					
	Xbar+Arb	Buffers	VCs	Tput	Latency			
OpenSMART	X	X	X	1	1			
BLESS	×	\checkmark	\checkmark	\checkmark	X			
CONNECT	X	X	X	\checkmark	\checkmark			
Split-Merge	X	X	\checkmark	\checkmark	\checkmark			
Hoplite	\checkmark	1	1	X	X			

Challenge

- \blacktriangleright Deflection routing \rightarrow inefficient use of wiring resources
 - Deflected packets stay in network for longer ightarrow latency \uparrow
 - Steal bandwidth from other traffic ightarrow throughput \downarrow
- Can we allow improve NoC performance under deflection routing?
- Are there unique opportunities provided by the FPGA fabric?
 - Hoplite cheap in LUT cost...
 - FastTrack \rightarrow inspect FPGA interconnect

Introduction and Motivation

FastTrack NoC Organization

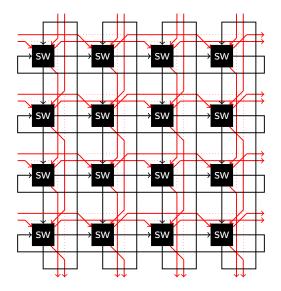
FastTrack Router Operation

Evaluation

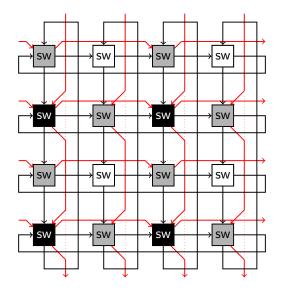
Introduction and Motivation

FastTrack NoC Organization

FastTrack Router Operation


Evaluation

FPGA Wire Speeds


XO	r0	xc	נייו	 X0.	(2	xo	YЗ	хo	Y4	X0.	r'5	X0.	76	хo	77	X0.	r8	X0.	r9	X0.	r10	X0.	Y11	X0.	r12	хo	Y13	XO	Y14
XI	r0	XJ	.YI	XI	(2	Хl	YЗ	XI	Y4	XI	r5	ХГ	Y6	XI	Y7	XI	r8	XI	r9	Хľ	r10	XI	Y11	XI	r12	Xl	Y13	хı	Y14
X2`	٢O	X2	m	X2`	(2	X2	YЗ	X2	Y4	X2	r5	X2	76	X2	17	X2`	r8	X2	Y9	X2	r10	X2	Y11	X2	Y12	X2	Y13	X2	Y14
ХЗ,	r0	XS	ry I	X3,	(2	хз	YЗ	ХЗ	Y4	ХЗ.	۲ 5	Х3.	Y6	X3.	17	X3.	r8	X3.	79	Х3,	r10	ХЗ.	Y11	X3.	712	хз	Y13	ХЗ	Y14
X4`	r0	X4	r'i	X4`	(2	X4	YЗ	X4	Y4	X4`	Y5	X4`	Y6	X4`	Y7	X4`	r8	X4`	Y9	X4`	r10	X4'	Y11	X4`	Y12	X4	Y13	X4	Y14
X5`	r0	XS	'n	X5`	(2	X5	YЗ	X5	SUPP	X5`	۲ 5	X5`	Y6	X5`	07	X5`	r8	X5`	19 ⁰ R	X5`	r10	X5	711	X5`	712	V5	V13	V5	に で に 、

distances not to scale

FastTrack NoC Organization

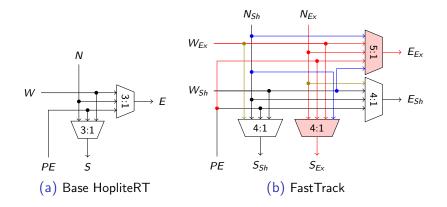
Depopulated Topology Generation

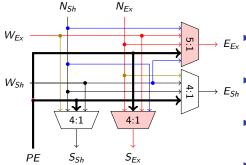
Parametric Topology generation

FPGA NoC parameterized by three terms:

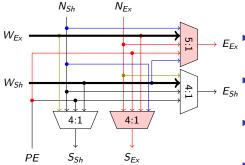
- N System size
- D Distance of express link
- ► R Depopulation parameter → controls how many routers are FastTrack vs. vanilla Hoplite
- Fully populated 4×4 NoC \rightarrow FT(16,2,1)
- Half population $4 \times 4 \text{ NoC} \rightarrow FT(16,2,2)$

Outline

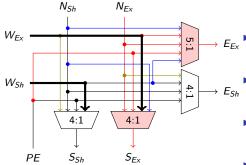

Introduction and Motivation

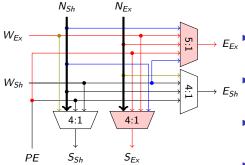

FastTrack NoC Organization

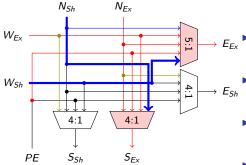
FastTrack Router Operation

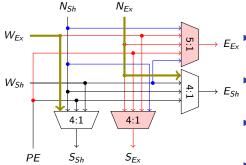

Evaluation

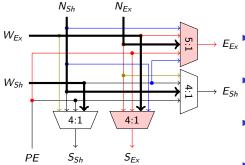
FastTrack Switch Organization

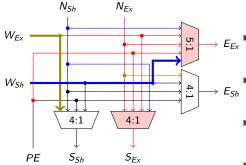



- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress


- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress


- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress


- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress


- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress

- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress

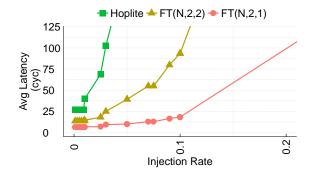
- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress

- Packets can start in either short or express links
- DOR routing function: travel in X first, then Y
- Packets can upgrade to fast links if they can
- Packets can downgrade to slow links only on turn!
- Livelock avoidance: $W \rightarrow S > N \rightarrow S$
- ► Express links=higher priority, deflected packets acquire higher priority → progress

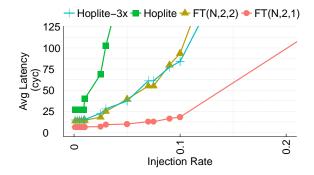
Outline

Introduction and Motivation

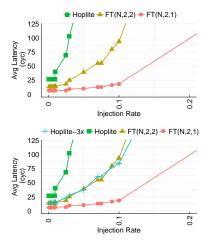
FastTrack NoC Organization


FastTrack Router Operation

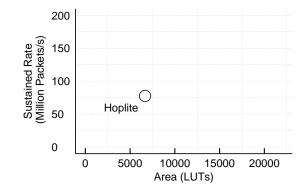
Evaluation


Experimental Setup

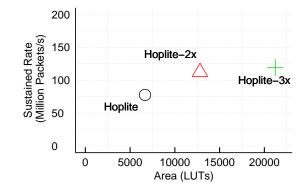
- \blacktriangleright RTL implementation of Routers \rightarrow parameterized
 - D, R parameters control cost
- Cycle-accurate simulations \rightarrow Verilator
- ► FPGA synthesis + out-of-context place-and-route + XDC floorplanning constraints → Vivado
- Benchmarking:
 - Synthetic traffic patterns at various injection rates
 - Traces from real workloads SpMV, Graph Analytics, Multi-processing
- Measure sustained throughput, average latency, power model


Avg. Latency RANDOM traffic 8×8 NoC

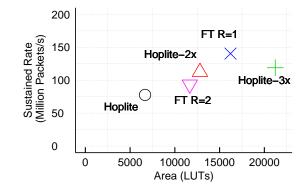
Avg. Latency RANDOM traffic 8×8 NoC

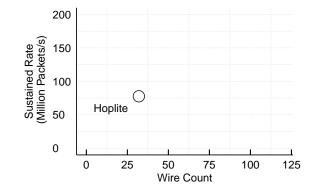


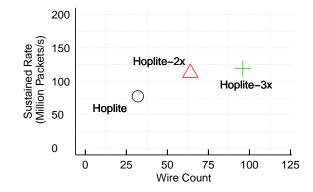
Avg. Latency RANDOM traffic



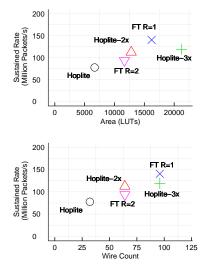
- FastTrack saturates at 4–5× higher injection rate than Hoplite
- vs Replicated Hoplite, still better but by smaller margin
- Replicated Hoplite has a new kind of livelock possibility (delivery)


Results – LUT vs Throughput 8×8 NoC


Results – LUT vs Throughput 8×8 NoC


Results – LUT vs Throughput 8×8 NoC


Results – Wiring vs. Throughput 8×8 NoC


Results – Wiring vs. Throughput 8×8 NoC

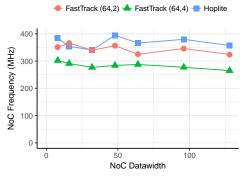
Results – Wiring vs. Throughput 8×8 NoC

Results – Cost vs. Throughput 8×8 NoC

- FastTrack makes better use of FPGA resources (LUTs, and wires)
- Packets are allowed to leave the NoC faster, freeing up resources
- Must pick proper combination of FT design parameters

Qualitative Comparison of FPGA NoC Routers

Router	Cost					
	Xbar+Arb	Buffers	VCs			
OpenSMART	X	X	X			
BLESS	×	\checkmark	\checkmark			
CONNECT	×	X	X			
Split-Merge	X	X	1			
Hoplite	\checkmark	1	✓			


Qualitative Comparison of FPGA NoC Routers

Router	Cost			Perf	
	Xbar+Arb	Buffers	VCs	Tput	Latency
OpenSMART	X	X	X	1	✓
BLESS	X	\checkmark	1	\checkmark	X
CONNECT	X	X	X	\checkmark	\checkmark
Split-Merge	X	X	\checkmark	\checkmark	\checkmark
Hoplite	\checkmark	1	1	X	X

Qualitative Comparison of FPGA NoC Routers

Router	Cost			Perf	
	Xbar+Arb	Buffers	VCs	Tput	Latency
OpenSMART	X	X	X	1	1
BLESS	×	\checkmark	\checkmark	\checkmark	X
CONNECT	X	X	X	\checkmark	\checkmark
Split-Merge	X	×	\checkmark	\checkmark	\checkmark
Hoplite	\checkmark	1	✓	X	X
FastTrack	\checkmark	1	✓	1	1

FPGA Mapping Frequency 8×8 NoC

- Calibration studies showed express links can travel quickly on chip
- Fmax for 2-hop FastTrack keeps up with original Hoplite
- 4-hop express link distance too large, some noticeable slowdown

Conclusions

- FastTrack outperforms state-of-the-art Hoplite FPGA NoC by
 - 2.5× for synthetic traffic, 2.8× for real-world traces
 - $2.2 \times$ on energy efficiency
 - ▶ 2.5× more LUTs required
- FastTrack better at larger system sizes
- Ideal hop distance is 2–4 (4–256 PEs)
- Fmax gap between FastTrack and Hoplite is small