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L1 Cache Characteristics
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Virtually Indexed Physically Tagged [VIPT]
Cache
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Virtually Indexed Physically Tagged [VIPT]
Cache

VA VPN C_Page Offset i

sét  block
index offset

} setf-1

PA PPN K Page Offset 5| P 1

}se’r—N

Cache

= > HIT/MISS

Mayank Parasar, School of Electrical and Computer
Engineering, Georgia Tech

6/26/18

N
e
=
@



Impact of Associativity on Access Latency .6
and Energy of cache
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Average MPKI
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Revisiting L1 Cache Characteristics for VIPT
Cache
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Opportunity: Superpage

Is it possible to relax constrains of

Traditional VIPT cache? Yes

How ?
Offse’r bifs: Offse’r bifs: Offse’r bifs:

Bosellne Page

SuperPoge

HW and OS Support for Superpages
IN Modern processors

More page-offset bits
for superpage!
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Prevalence of s

uperpages in modern OSes

under memory fragmentation
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SEESAW: Concept
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SEESAW: Micro-architecture

Superpage offset
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SEESAW: Micro-architecture
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SEESAW: Superpage access

Superpage offset
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SEESAW: Basepage access
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SEESAW: TFT and Partition Decoder

Translation
Filter Table
(TFT)
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Translation Filter Table
> TFT Lookup
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> TFT Update > For 64kB Cache
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SEESAW: Cache line insertion policy
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SEESAW: Cache line insertion policy

m4way-8way
® Superpage miss: victim within the partition
m Basepage miss: victim within the set

m4way
m Uses LRU within the associated partition
® Avoid installing the same line twice
m Saves energy

Mayank Parasar, School of Electrical and Computer
Engineering, Georgia Tech

N
e
=
&

6/26/18



SEESAW: System Level Optimization

m Cache coherence
m Cache coherence lookups use physical address

m Snoopy provide higher energy benefits over Directory based
coherence

m Page table modifications
m Superpage splintered into multiple basepages
m Multiple basepages promoted to superpages
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SEESAW: Simulated system

CPI Models
~Intel Sandybridge: 168-entry ROB, 54-entry Instruc-
tion Scheduler, 16 byte I-fetches per cycle

Out-of-Order

\ In-order ~Intel Atom: Dual-Issue, 16-stage EiEeline !
Memory System
L1 Cache Private Split L11 (32kB) + L1D (Table 3)
TLB (Atom) L1 (64-entry for 4kB, 32-entry for 2MB), 512-entry L2
TLB (Sbridge) | Split L1 (128-entry for 4kB, 16-entry for 2MB)
LLC Unified, 24MB
DRAM 4GB, 51ns round-trip access latency
System Parameters
[ Technology 22nm ]
| Frequency 1.33 GHz, 2.80 GHz, 4.0 GHz |
Cores 32,64, 128
Coherence MOESI directory
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SEESAW: Workloads

mSpec
mParsec

® Cloudsuite
® Tunkrank

mBiobench
® Mummer
m Tiger

= MongoDB

m Server Workload

mgrap
m Nutc

m Socia

N500
N Hadoop

-event web

service

®Olia

m Key value store
m Redis
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Performance improvement

SEESAW
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SEESAW: Performance improvement
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SEESAW: Energy savings
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SEESAW: TFT analysis and Way-Prediction
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Revisiting L1 Cache Characteristic
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SEESAW: Conclusion

m |1 caches are optimized for latency

® VIPT imposes indirect restriction on number of
sets in a L1 cache, increasing associativity

® There is non-linear relation between associativity

and access latency/energy of the L1 cache Associativit

m Superpages are often used in modern OSes

m SEESAW provides low-associative access to Set

superpages, providing both latency and energy A
benefits

® Up to 10 % performance improvement and 20 %
energy reduction in modern workloads

s SEESAW has extremely low-overhead and is
readily implementable = | Thank ?@%é
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