

# **SEESAW:** Set Enhanced Superpage Aware caching

Mayank Parasar<sup>Σ</sup>, Abhishek Bhattacharjee $^{\Omega}$ , Tushar Krishna $^{\Sigma}$ 

<sup>5</sup>School of Electrical and Computer Engineering Georgia Institute of Technology <sup>Ω</sup>Department of Computer Science **Rutgers University** 

mparasar3@gatech.edu



Set

#### **Outline**

- Motivation
- SEESAW: Concept
- SEESAW: Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



#### **L1 Cache Characteristics**

|                      | Ideal-Cache | VIPT-Cache |
|----------------------|-------------|------------|
| Fast lookup          |             |            |
| High hit-rate        |             |            |
| Energy<br>Efficiency |             |            |



# Virtually Indexed Physically Tagged [VIPT] Cache





# Virtually Indexed Physically Tagged [VIPT] Cache





# Impact of Associativity on Access Latency and Energy of cache



**Cache Access Latency** 



Cache Access Energy



#### Effect of associativity on MPKI of cache



High Associativity hurts latency and energy without commensurately improving hit rate



# Revisiting L1 Cache Characteristics for VIPT Cache

|                      | Ideal-Cache | VIPT-Cache |                    |
|----------------------|-------------|------------|--------------------|
| Fast lookup          |             | ?          | virtual<br>memory! |
| High hit-rate        |             |            |                    |
| Energy<br>Efficiency |             | ?          | Virtual<br>memory! |



# **Opportunity: Superpage**

#### Is it possible to relax constrains of Traditional VIPT cache?



How?



HW and OS Support for Superpages in modern processors



# Prevalence of superpages in modern OSes under memory fragmentation



Ran on 32-core; Sandybridge; 32 GB RAM Memhog causes memory fragmentation; higher %age indicates higher fragmentation



#### **Outline**

- Motivation
- **SEESAW:** Concept
- SEESAW: Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



## **SEESAW: Concept**





Less-sets More-associativity More-sets Less-associativity



#### **Outline**

- Motivation
- SEESAW: Concept
- **SEESAW:** Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



#### **SEESAW: Micro-architecture**





#### **SEESAW: Micro-architecture**





## **SEESAW: Superpage access**





# **SEESAW: Basepage access**





#### **SEESAW: TFT and Partition Decoder**



- > TFT Lookup
  - Direct mapped
  - > False negative due to size
- > TFT Update
  - > VA misprediction
  - > 2MB L1-TLB fill
  - 2MB L1-TLB Invalidation

#### **Partition Decoder**

- For 32kB Cache
- For 64kB Cache



# **SEESAW: Cache line insertion policy**





## **SEESAW: Cache line insertion policy**

- 4way-8way
  - Superpage miss: victim within the partition
  - Basepage miss: victim within the set
- 4way
  - Uses LRU within the associated partition
  - Avoid installing the same line twice
  - Saves energy



## **SEESAW: System Level Optimization**

- Cache coherence
  - Cache coherence lookups use physical address
  - Snoopy provide higher energy benefits over Directory based coherence

- Page table modifications
  - Superpage splintered into multiple basepages
  - Multiple basepages promoted to superpages



#### **Outline**

- Motivation
- SEESAW: Concept
- SEESAW: Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



# **SEESAW: Simulated system**

| CPU Models        |                                                       |  |  |  |  |
|-------------------|-------------------------------------------------------|--|--|--|--|
| Out-of-Order      | ~Intel Sandybridge: 168-entry ROB, 54-entry Instruc-  |  |  |  |  |
|                   | tion Scheduler, 16 byte I-fetches per cycle           |  |  |  |  |
| In-order          | ~Intel Atom: Dual-Issue, 16-stage pipeline            |  |  |  |  |
| Memory System     |                                                       |  |  |  |  |
| L1 Cache          | Private Split L1I (32kB) + L1D (Table 3)              |  |  |  |  |
| TLB (Atom)        | L1 (64-entry for 4kB, 32-entry for 2MB), 512-entry L2 |  |  |  |  |
| TLB (Sbridge)     | Split L1 (128-entry for 4kB, 16-entry for 2MB)        |  |  |  |  |
| LLC               | Unified, 24MB                                         |  |  |  |  |
| DRAM              | 4GB, 51ns round-trip access latency                   |  |  |  |  |
| System Parameters |                                                       |  |  |  |  |
| Technology        | 22nm                                                  |  |  |  |  |
| Frequency         | 1.33 GHz, 2.80 GHz, 4.0 GHz                           |  |  |  |  |
| Cores             | 32, 64, 128                                           |  |  |  |  |
| Coherence         | MOESI directory                                       |  |  |  |  |



#### **SEESAW: Workloads**

- Spec
- Parsec
- Cloudsuite
  - Tunkrank
- Biobench
  - Mummer
  - Tiger
- MongoDB

- Server Workload
  - graph500
  - Nutch Hadoop
- Social-event web service
  - Olia
- Key value store
  - Redis



#### **Outline**

- Motivation
- SEESAW: Concept
- SEESAW: Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



## **SEESAW: Performance improvement**



# SEESAW observes 3-10% better runtime over baseline



## **SEESAW: Performance improvement**



Out-of-order CPU



# ~10% performance improvement for 64kB cache in OoO CPUs



# **SEESAW: Energy savings**



10-20% more energy savings over CPUs using baseline VIPT caches!

Approx. one-third of energy savings from coherence



# **SEESAW: TFT analysis and Way-Prediction**



TFT Analysis



SEESAW + Way-prediction

# 16-entry TFT drives miss-rate under 10% SEESAW+WP shows symbiotic behavior



#### **Outline**

- Motivation
- SEESAW: Concept
- SEESAW: Micro-architecture
- Evaluation Methodology
- Results
- Conclusion



# **Revisiting L1 Cache Characteristic**

|                      | Ideal-Cache | VIPT-Cache | seesAW<br>Cache |
|----------------------|-------------|------------|-----------------|
| Fast lookup          |             |            |                 |
| High hit-rate        |             |            |                 |
| Energy<br>Efficiency |             |            |                 |



#### **SEESAW: Conclusion**

- L1 caches are optimized for latency
  - VIPT imposes indirect restriction on number of sets in a L1 cache, increasing associativity
  - There is non-linear relation between associativity and access latency/energy of the L1 cache
- Superpages are often used in modern OSes
  - SEESAW provides low-associative access to superpages, providing both latency and energy benefits
  - Up to 10 % performance improvement and 20 % energy reduction in modern workloads
- SEESAW has extremely low-overhead and is readily implementable





