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Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain 
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip 
and on-chip interconnection networks. 

Cause system breakdown and kill chips.

Deadlocks are hard to detect.

Manifest after a long use time.

Show up due to system wear out faults and power-
gating of network elements which are hard to simulate.

Need a solution for functional correctness !!
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Solution I: Dally’s Theory
Defines a strict order in acquisition of  links and/or 
buffers which ensures a cyclic dependency is never 
created.  

Implementations: Turn model [5], XY routing, Up-
Down routing [20].

Limitations: 

Routing Restrictions: Increased Latency, 
Throughput loss, Energy overhead 

Require large no. of VCs for fully adaptive 
routing.
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Solution II: Duato’s Theory

Limitations: 

Energy and Area overhead of escape VCs. 

Additional routing tables/logic for routing within 
escape-VC.
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Other Solutions
Solution III: Flow Control  

Restrict injection when no. of empty buffers fall 
below a threshold 

Implementation: Bubble Flow Control [9]

Limitation:  Implementation Complexity.

Solution IV: Deflection Routing  

Assign every flit to some output port even if they get 
misrouted.

Implementation: BLESS [10], CHIPPER [35]

Limitation:   Livelocks
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Simultaneous Synchronized Movement of all 
deadlocked packets in the loop is called a spin.

Each spin leads to one hop forward movement 
of all deadlock packets.

One spin may not resolve the deadlock. If so, 
spin can be repeated

Deadlock is guaranteed to be resolved in a 
finite number of spins [proof in paper, Sec. III]
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SPIN: Implementation Example
SPIN is a generic deadlock freedom theory that 
can have multiple implementations.

SPIN Implementation: 

Detect the Deadlock. 

Coordinate a time for spin. 

Execute the spin.

We choose a recovery approach as deadlocks 
are rare scenarios (See Sec. II-F).
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Implementation Example : Detect Deadlocks

Use counters.

Placed at every node at design time.
Optimize by exploiting topology symmetry       
(See Static Bubble [6]).

If packet does not leave in threshold time 
(configurable), it indicates a  
potential deadlock. 

Counter expired ?               Send probe to verify 
deadlock.
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Expires at Node 
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Probe Returns: 
Deadlock Confirmed
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Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer 
dependency.

Probe returns to sender: 
 Cyclic buffer dependence, hence 
deadlock.

Next, send a move msg. to convey the spin time
Upon receiving move msg., router sets its 
counter to count to spin cyle.
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Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal 
operation. 

Counter expires again, process repeated.

Optimization: send probe_move after spin is     
complete.

probe_move checks if deadlock still exists 
and if so, sets the time for the next spin.

Details in paper (Sec. IV-B).

24
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Spl. Msgs. have higher priority in link usage over 
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No additional links:  Spl. Msgs. use the same links as 
regular flits. 

Spl. Msgs. have higher priority in link usage over 
regular flits. 

Links are anyways idle during deadlocks.

Bufferless Forwarding:  Spl. Msgs. are not buffered 
anywhere (either forwarded or dropped). 

Distributed Design:  any router can initiate the 
recovery.

4% area overhead compared to traditional mesh 
router in 15nm Nangate [42].
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adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors: 
Minimal Adaptive
Non-minimal Adaptive.

Route Selection Metrics:
Credit turn-around time
Hop Count

More details in paper (Sec. V).
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Adaptivity

Minimal Theory Deadlock 
Freedom Type

West-first Routing Partial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance

Static-Bubble [6] Full Yes Flow-Control Recovery

1024 Node Off-chip Dragon-fly:

Design Routing 
Adaptivity

Minimal Theory Deadlock 
Freedom Type

UGAL  [37] Full No Dally Avoidance
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Scalable: Distributed Deadlock Resolution

Plug-n-Play: topology agnostic

Enables true one-VC fully adaptive routing for any 
topology

Performance (Saturation Throughput): 

On-chip mesh: upto 68% higher 

Off-chip Dragon-fly: upto 62% higher
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On-Chip Mesh 
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly 
(Cray XC Networks)

Datacenters JellyFish (HP), 
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific 
Accelerators 

Corelink Interconnect (ARM)

Thank you !!
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SPIN : Applications
SPIN is a generic deadlock freedom theory 

Scalable: distributed deadlock resolution 

Plug-n-Play: doesn’t require knowledge of topology

SPIN can thus be used in : 

On-chip networks: Mesh (Intel SCC, Tilera Tile64) 

Supercomputers:  Dragon-fly (Cray XC Networks) 

Datacenters: Jellyfish (HP), Fat Tree (Google) 

Static & Dynamically Changing Irregular topologies due to 
faults (Static Bubble [6]) & power-gating (Router Parking [29])  

NoC Generators (Opensmart [13]) & Domain specific 
accelerator (Eyeriss[15])
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