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Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.
B Deadlocks are hard fo defect.
B Manifest after a long use time.

B Show up due to system wear ouf faults and power-
gating of network elements which are hard to simulate.

B Need a solution for functional correctness !l
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Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

B Implementations: Turn model [5], XY routing, Up-
Down routing [20].

B | mitations:

B Routing Restrictions: Increased Latency,
Throughput loss, Energy overhead

B Require large no. of VCs for fully adaptive
routing.
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Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

B | mitations:

B Fnergy and Area overhead of escape VCs.

B Additional routing tables/logic for routing within
escape-VC.




Other Solutions




Other Solutions

B Solution lll: Flow Control




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]

B [ imitation: Implementation Complexity.




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]

B [ imitation: Implementation Complexity.

B Solution IV: Deflection Routing




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [ imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [ imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.

B mplementation: BLESS [10], CHIPPER [35]




Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [ imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.

B mplementation: BLESS [10], CHIPPER [35]

B | mitation: Livelocks
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B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

B Each spin leads to one hop forward movement
of all deadlock packets.

B One spin may not resolve the deadlock. If so,
spin can be repeated

B Deadlock is guaranteed to be resolved in o
finite numlber of spins [proof in paper, Sec. lll]
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B SPIN Is a generic deadlock freedom theory that
can have multiple implementations.

B SPIN Implementation:

B Detect the Deadlock.

B Coordinate a time for spin.
B Fxecute the spin.

B We choose arecovery approach as deadlocks
are rare scenarios (See Sec. lI-F).
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Implementation Example

B Jse counters.

B Ploced atf every node o

: Detect Deadlocks

- design fime.

B Optimize by exploifing
(See Static Bubble [6]).

‘opology symmetry

B |f packet does not leave in threshold fime

(configurable), It indicat
potential deadlock.

€S d

B Counter expired 2 ===l Send probe to verify

deadlock.
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Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

B Probe refurns to sender:

B Cyclic buffer dependence, hence
deadlock.

B Next, send a move msg. to convey the spin fime

B Upon recelving move msg., router sets ifs
counter to count to spin cyle.
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Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

B Counter expires again, process repeated.

B Oplimization: send probe _move after spin Is
complete.

B orobe_move checks it deadlock still exists
and If so, sets the fime tfor the next spin.

B Details in paper (Sec. IV-B).
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Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

B | inks are anyways idle during deadlocks.

B Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

B Distributed Design: any router can initiate the
recovery.

B 4% area overhead compared to traditfional mesh
router in 15nm Nangate [42].
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B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

B Route Selection Metrics:

B Credit tfurn-around time
B Hop Count

® More details in paper (Sec. V).
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B Network Configuration:

Simulator gemsS + Garnet 2.0 Network simulator

Topologies 8x8 Mesh | 1024 node Off-chip

Dragon-fly
Link 1-cycle Inter-group: 1-cycle
Latency Intra-group: 3-cycle

Traffic Synthetic + Synthetic
Multi-threaded (PARSEC)
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B 8x8 Mesh:

Design Routing Minimal Theory Deadlock

Adaptivity Freedom Type

West-first Routing Parfial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance
Static-Bubble [6] Full Yes Flow-Control Recovery

B 1024 Node Off-chip Dragon-fly:

Routing Minimal Deadlock
Adaptivity Freedom Type

UGAL [37] NO Dally Avoidance
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B 1024-node Oft-chip Dragon-fly:
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throughput compared to
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50% higher throughput
compared to UGAL_Dally

25% higher throughput
compared to UGAL_Dally
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Saturation Throughput

B 8x8 On-chip Mesh:
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B 8x8 On-chip Mesh:
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Saturation Throughput

B 8x8 On-chip Mesh:
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B 8x8 On-chip Mesh:
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Conclusion

B Deadlocks are a fundamental problem in
Inferconnection Networks.

B SPIN is a generic deadlock freedom theory
B Scalable: Distributed Deadlock Resolution
B Plug-n-Play: topology agnostic

B Enables frue one-VC fully adapfive roufing for any
topology

B Performance (Saturation Throughput):
B On-chip mesh: upto 68% higher
B Off-chip Dragon-fly: upto 62% higher
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Conclusion

B Practical Applications:

On-Chip Mesh
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly
(Cray XC Networks)

Datacenters JellyFish (HP),
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific Corelink Interconnect (ARM)
Accelerators

® Thank you !!
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SPIN : Applications

B SPINis © deadlock freedom theory

B Scalable: distributed deadlock resolution

- doesn’t require knowledge of tfopology
B SPIN can thus be used in:
u Mesh (Intel SCC, Tilera Tileé4)
-~ Dragon-fly (Cray XC Networks)
u . Jellyfish (HP), Fat Tree (Google)
B Static & Dynamically Changing due to

faults (Statfic Bubble [6]) & power-gating (Router Parking [29])

- (Opensmart [13]) & Domain specific
(Eyeriss[15])
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Implementation Example : Probe Msg.

Counter
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Implementation Example : Probe Msg.
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Implementation Example : Probe Msg.
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Implementation Example : Probe Msg.
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Implementation Example : Probe Msg.

Probe Returns:

— A Deadlock Confirmed
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Implementation Example : Move Msgq.

BRI
1. Counter Expires

2. Send Probe
3. Send Move

4. Counter expires
In spin cycle
5. Spin G

SRR
B |
[r——
R




Implementation Example : Move Msgq.

3. Send Move I 1

4. Counter expires
in spin cycle B
5. Spin e
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Implementation Example : Move Msgq.

1 LA je—— F | ¢

3. Send Move I 1 T I
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Implementation Example : Move Msgq.

1. Counter Expires 1 L N | P — - 6
2. Send Probe
3. Send Move |
4. Counter expires B
In spin cycle I
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Implementation Example : Move Msgq.

A ) )
Set counter to
3. Send Move | ] _count to spin cycle
4. Counter expires ' —
in spin cycle B l e
5. Spin A E 5




Implementation Example : Move Msgq.
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Implementation Example : Move Msgq.
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Implementation Example : Move Msgq.
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Implementation Example : Move Msgq.
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Implementation Example : Move Msgq.
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