ISCA 2018
Session 8B: Interconnection Networks

@M: Synchronized Progress in

Interconnection Networks

AI‘M SPIN) : A new theory for

deadlock freedom

TEXAS A&M
Aniruddh Ramrakhyani Tushar Krishna
Georgia Tech Georgia Tech
(aniruddh@gatech.edu) (tushar@ece.gatech.edu)
Paul V. Gratz

Texas A&M University
(pgratz@tamu.edu)

Network Routing

Network Routing

10

11

5
4

i
A
B
C
I

12

Network Routing

— I
10

I e
11

T
12

Network Routing

J

6

F

1

1

10

E
2

11

6

<«

3

I 1

|

12

Network Routing

i I 1

A \: e
B = —
!
C - j—

Deadlock

Routing Deadlocks

Routing Deadlocks

|
r
T

Routing Deadlocks

Deadlock

Routing Deadlocks

B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlock

Routing Deadlocks

B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Routing Deadlocks

B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.

Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.

B Deadlocks are hard fo defect.

Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.
B Deadlocks are hard fo detect.

B Manifest after a long use time.

Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.
B Deadlocks are hard fo defect.
B Manifest after a long use time.

B Show up due to system wear ouf faults and power-
gating of network elements which are hard to simulate.

Routing Deadlocks
B A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

B Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

B Cause system breakdown and kill chips.
B Deadlocks are hard fo defect.
B Manifest after a long use time.

B Show up due to system wear ouf faults and power-
gating of network elements which are hard to simulate.

B Need a solution for functional correctness !l

Solution I: Dally’s Theory

5
Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5
Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5
Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

Higher
o Lower not
allowed 1 A F 6
|
2 ©
' l
B I
2 | ‘ 4 E S
G 4 D \

Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

Higher
o Lower not
allowed 1 A F 6
2 ©
B L l
2 | : 3
3 5
G 4 D \

6
Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

6
Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never

creqated.

B Implementations: Turn model [5], XY routing, Up-
Down routing [20].

Solution I: Dally’s Theory

B Defines a sfrict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

B Implementations: Turn model [5], XY routing, Up-
Down routing [20].

B | mitations:

B Routing Restrictions: Increased Latency,
Throughput loss, Energy overhead

B Require large no. of VCs for fully adaptive
routing.

Solution Il: Duato’s Theory

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

;->

|
;, Escape-VC

Escape-VC

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

;->

|
;, Escape-VC

Escape-VC

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

— <

F ;>
I I VCo , Escape-VC
B _ F :
B
2 | E 5) T :
l ‘ l E I' _
— | —r 4 — veo ——

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

Solution Il: Duato’s Theory

B Adds buffers 1o create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

B |mplementatfion: turn restrictions in escape-VC.

B | mitations:

B Fnergy and Area overhead of escape VCs.

B Additional routing tables/logic for routing within
escape-VC.

Other Solutions

Other Solutions

B Solution lll: Flow Control

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]

B [imitation: Implementation Complexity.

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]

B [imitation: Implementation Complexity.

B Solution IV: Deflection Routing

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.

B mplementation: BLESS [10], CHIPPER [35]

Other Solutions

B Solution lll: Flow Control

B Resftrict infjection when no. of empty buffers fall
below a threshold

B |mplementation: Bubble Flow Control [9]
B [imitation: Implementation Complexity.

B Solution IV: Deflection Routing

B Assign every flit fo some output port even if they get
misrouted.

B mplementation: BLESS [10], CHIPPER [35]

B | mitation: Livelocks

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
Routing Indepen-

Freeé Minimal Adaptive dent

/~ CDG not Injection
Required Restrictions

Comparison of Deadlock Freedom Theories

Acyclic No Packet VC cost for Mesh Topolog
CDG not Injection

Livelock

Routing Indepen-
Free p

Required Restrictions Minimal Adaptive dent

Comparison of Deadlock Freedom Theories

Acyclic No Packet VC cost for Mesh Topolog
Routing Indepen-
Minimal Adaptive dent

Livelock

CDG not Injection
Free

Required Restrictions

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
CDG not Injection = Routing Indepen-
Required Restrictions == Minimal Adaptive dent

Control

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
CDG not Injection = Routing Indepen-
Required Restrictions == Minimal Adaptive dent

Control

Deflection
Routing

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
CDG not Injection = Routing Indepen-
Required Restrictions == Minimal Adaptive dent

V4 4 1 6
V4 V4 1 2

Can we do befrer ¢¢
b ¥ RN 1

Control

Deflection
Routing

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
CDG not Injection = Routing Indepen-
Required Restrictions == Minimal Adaptive dent

Control

Deflection
Routing

Comparison of Deadlock Freedom Theories

Acyclic No Packet Livelock VC cost for Mesh Topolog
CDG not Injection = Routing Indepen-
Required Restrictions == Minimal Adaptive dent

Control

Deflection
Routing

Outline

B SPIN : Synchronized Progress in Interconnection Networks
® Evaluations

B Conclusion

SPIN : Key Idea

SPIN : Key Idea

3|

Deadlock
taEtanl]

|

[CD |
-

SPIN : Key Idea

What if:

We coordinate the movement
of every packet to the next
hop at a given time ¢¢

Deadlock

SPIN : Key Idea

What if:

We coordinate the movement
of every packet to the next
hop at a given time ¢¢

SPIN : Key Idea

SPIN : Key Idea

@Itaneous
Synchronized
wvement

12
SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

2 | 2]
I B D.;"k @Itaneous
Synchronized
. C . _— wvement

12
SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

I .
I S
1 6
R —
2 5

12
SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

spin
complete

SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

B Each spin leads to one hop forward movement
of all deadlock packets.

SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

B Each spin leads to one hop forward movement
of all deadlock packets.

B One spin may not resolve the deadlock. If so,
spin can be repeated

SPIN : Key Idea

B Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

B Each spin leads to one hop forward movement
of all deadlock packets.

B One spin may not resolve the deadlock. If so,
spin can be repeated

B Deadlock is guaranteed to be resolved in o
finite numlber of spins [proof in paper, Sec. lll]

SPIN : Key Idea

SPIN : Key Idea

il

| |

SRR |
T

SPIN : Key Idea

First spin
complete

SPIN : Key Idea

. .
B : F | E ‘ 6_
R =
o 2 | | } ? I 2 F
_— ey | e
3 4

First spin
complete

SPIN : Key Idea

SPIN : Key Idea

Second spin
complete

SPIN : Key Idea

1

SPIN : Key Idea

i
|
I

SPIN : Key Idea

2 | 5|
I | I Packets E &B
B — exit the loop
A — ——

SPIN : Key Idea

E,
1 D 6 Deadlock
—_— Resolved
F \ L
2 | C 3]
Packets E &B
B — exit the loop
A \

Outline

B SPIN : Synchronized Progress in Interconnection Networks

B Implementation Example
B Micro-architecture
B FAVORS

B Fvaluations

B Conclusion

SPIN: Implementation Example

SPIN: Implementation Example

B SPIN Is a generic deadlock freedom theory that
can have multiple implementations.

SPIN: Implementation Example

B SPIN Is a generic deadlock freedom theory that
can have multiple implementations.

B SPIN Implementation:

B Detect the Deadlock.

B Coordinate a time for spin.

B Execute the spin.

SPIN: Implementation Example

B SPIN Is a generic deadlock freedom theory that
can have multiple implementations.

B SPIN Implementation:

B Detect the Deadlock.

B Coordinate a time for spin.
B Fxecute the spin.

B We choose arecovery approach as deadlocks
are rare scenarios (See Sec. lI-F).

Implementation Example : Detect Deadlocks

Implementation Example : Detect Deadlocks

B Jse counters.

Implementation Example : Detect Deadlocks

B Jse counters.

B Placed at every node at design fime.

Implementation Example : Detect Deadlocks

B Jse counters.

B Placed at every node at design fime.

B Optimize by exploiting topology symmetry
(See Static Bubble [6]).

Implementation Example : Detect Deadlocks

B Jse counters.

B Placed at every node at design fime.

B Optimize by exploiting topology symmetry
(See Static Bubble [6]).

B |f packet does not leave in threshold fime
(configurable), It indicates o
potential deadlock.

Implementation Example

B Jse counters.

B Ploced atf every node o

: Detect Deadlocks

- design fime.

B Optimize by exploifing
(See Static Bubble [6]).

‘opology symmetry

B |f packet does not leave in threshold fime

(configurable), It indicat
potential deadlock.

€S d

B Counter expired 2 ===l Send probe to verify

deadlock.

Implementation Example : Probe Msg.

RS
1. Deadlock 1

Detection

prasmE

2. Coordinating
the spin.

3. Executing

the spin. e

Implementation Example : Probe Msg.

1. Deadlock 1 A |¢e—I F 6
Detection T I Counter
2. Coordinating l l e Expires at Node
the spin. ' 5
3.Executing B _ : Y
the spin.
s 3 B, a

Implementation Example : Probe Msg.

PSSR _
1. Deadlock 1 6
Detection Counter
2. Coordinating I Expires at Node
the spin. 5
3. Executing
the spin. e
2
I Send Probe
REtaseal
TR
3 4

Implementation Example : Probe Msg.

. .

1

PR
1. Deadlock 1

Detection l

Counter

2. Coordinating Expires at Node

the spin. 5
3. Executing

the spin. =

2 -

l l Send Probe
P E
T
3

Implementation Example : Probe Msg.

1. Deadlock
Detection

2. Coordinating
the spin.

3. Executing
the spin.

N | r— Probe]] 6_
[] il
B [5_
[il
S 4

Implementation Example : Probe Msg.

1. Deadlock 1 Probe ' 6
Detection
2. Coordinating
the spin.
3. Executing |BEERER
the spin. e E
2 ' T I >
D g
T
3 4

Implementation Example : Probe Msg.

SRR - [ReEE
1. Deadlock 1 Probe 6
Detection
2. Coordinating l 1
the spin.
3. Executing B _ |
the spin. e E 5
2 | T l
. : '_’ | 4_

Implementation Example : Probe Msg.

1. Deadlock 1 6
Detection
2. Coordinating
the spin.
3. J:Ehxeegu_tlng — |
pin. 5
2
Ez2aiezd
T
3 4

Implementation Example : Probe Msg.

1. Deadlock 1 A =[6
Detection
2. Coordinating l *
the spin.
3. Executing B _ |
the spin. e E
2 | I l >
Probe | D —
fecos 3 TR a

: 1

Implementation Example : Probe Msg.

— FIJ_

RS
1. Deadlock 1

Detection

2. Coordinating
the spin.

3. Executing

the spin. e

Implementation Example : Probe Msg.

1. Deadlock 1 A = F 6
Detection

2. Coordinating l *
the spin.

3. Executing — B _ |
the spin. 5 | Probe ‘ 5

Iy 1
__ C — o
i |

Implementation Example : Probe Msg.

R Probe Returns:
1 Deadlock 1 I A]= F Deadlock Confirmed
Detection
2. Coordinating I ¢ /
the spin.
3. Executing B | B
the spin. — Probe 5
—
T

Implementation Example : Probe Msg.

Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

B Probe refurns to sender:

Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

B Probe refurns to sender:

B Cyclic buffer dependence, hence
deadlock.

Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

B Probe refurns to sender:

B Cyclic buffer dependence, hence
deadlock.

B Next, send a move msg. to convey the spin fime

Implementation Example : Probe Msg.

B Probe is a special message that fracks the buffer
dependency.

B Probe refurns to sender:

B Cyclic buffer dependence, hence
deadlock.

B Next, send a move msg. to convey the spin fime

B Upon recelving move msg., router sets ifs
counter to count to spin cyle.

Implementation Example : Move Msgq.

R IRRORBIRR | ; _
2. Coordinating I l T I
the spin.
3. Executing 5B |
the spin. T— > _ | E . 5

) [
et
EGRAR

Implementation Example : Move Msgq.

TS A | (— e

2. Coordinating l 1 T I

the spin.

3. Executing B _ |
the spin. e E
l l T I Send Move
C

Implementation Example : Move Msgq.

1 A “"‘"““"‘] F 6
2. Coordinating l 1 T I
the spin.
3. Executin B F
g Spin_g REHEAE , P
l l T I Send Move
. — . i

: 1

Implementation Example : Move Msgq.

1 LA 4""—""- 6
2. Coordinating l l I I
the spin.
3. Executin B |
the spin.g T— > _ | E . 5
fffffffff C |
T 3) e | e 4_

Implementation Example : Move Msgq.

Set counter to
_count to spin cycle
\

2. Coordinating

the spin.
3. Executing B
the spin. e
2
PEiaE el
3

Implementation Example : Move Msgq.

o L)
1 Move 6
2. Coordinating l l
the spin.
3. Executing B |
the spin. e > | 5
3 R e D . s

Implementation Example : Move Msgq.

I.m(-
F 6
2. Coordinating T I
the spin.
3. Executing B
the spin. _— | E 5
D e
— 4

Implementation Example : Move Msgq.

& ‘&
|

|1 il

2. Coordinating
the spin.

3. Executing

the spin. e

Implementation Example : Move Msgq.

—~
@

2. Coordinating
the spin.

3. Executing

the spin. e

Implementation Example : Move Msgq.

1 ™

? F ﬁsp
1

- o

2. Coordinating
the spin.

3. Executing

the spin. e

[|]

Implementation Example : Move Msgq.

™
.

o X
T
‘6

2. Coordinating
the spin.

3. Executing

the spin. e

Implementation Example : spin
i

3. Executing
the spin.

1

l

2

3

Implementation Example : spin

Counters expire
together in the spin
cycle

3. Executing
the spin.

Implementation Example : spin

I e
e
) il
!
: A 5 5
3. Execufung — o I
the spin. 2
I 1 [
B 4
| 3

Multiple SPIN Optimization

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

B Counter expires again, process repeated.

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

B Counter expires again, process repeated.

B Oplimization: send probe _move after spin Is
complete.

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

B Counter expires again, process repeated.

B Oplimization: send probe _move after spin Is
complete.

B orobe_move checks it deadlock still exists
and If so, sets the fime tfor the next spin.

24
Multiple SPIN Optimization

B Resolving a deadlock may require multiple spins

B Affter spin, router can resume normal
operation.

B Counter expires again, process repeated.

B Oplimization: send probe _move after spin Is
complete.

B orobe_move checks it deadlock still exists
and If so, sets the fime tfor the next spin.

B Details in paper (Sec. IV-B).

Outline

B SPIN : Synchronized Progress in Interconnection Networks

B Micro-architecture
B FAVORS
B Fvaluations

B Conclusion

Implementation Micro-architecture

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

B | inks are anyways idle during deadlocks.

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

B | inks are anyways idle during deadlocks.

B Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

B | inks are anyways idle during deadlocks.

B Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

B Distributed Design: any router can initiate the
recovery.

Implementation Micro-architecture

® No addifional links: Spl. Msgs. use the same links as
regular flits.

B Spl. Msgs. have higher priority in link usage over
regular flits.

B | inks are anyways idle during deadlocks.

B Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

B Distributed Design: any router can initiate the
recovery.

B 4% area overhead compared to traditfional mesh
router in 15nm Nangate [42].

Outline

B SPIN : Synchronized Progress in Interconnection Networks

B FAVORS
B Fvaluations

B Conclusion

FAVORS Routing Algorithm

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:
" Minimal Adaptive

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

B Route Selection Metrics:

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

B Route Selection Metrics:
B Credit furn-around time

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

B Route Selection Metrics:

B Credit tfurn-around time
B Hop Count

28
FAVORS Routing Algorithm

B SPIN is the first scheme that enables frue one-VC fully
adaptive deadlock-free routing for any fopology.

B FAVORS : Fully Adaptive One-vc Routing with SPIN.

B Algorithm has two flavors:

" Minimal Adaptive
B Non-minimal Adaptive.

B Route Selection Metrics:

B Credit tfurn-around time
B Hop Count

® More details in paper (Sec. V).

Outline

B Evaluations

B Conclusion

Evaluations

B Network Configuration:

Simulator

Topologies

Link
Latency

Traffic

Evaluations

B Network Configuration:

Simulator gemsS + Garnet 2.0 Network simulator

Topologies 8x8 Mesh |

Link 1-cycle
Latency

Traffic Synthetic +
Multi-threaded (PARSEC)

Evaluations

B Network Configuration:

Simulator gemsS + Garnet 2.0 Network simulator

Topologies 8x8 Mesh | 1024 node Off-chip

Dragon-fly
Link 1-cycle Inter-group: 1-cycle
Latency Intra-group: 3-cycle

Traffic Synthetic + Synthetic
Multi-threaded (PARSEC)

Evaluations : Baselines

Evaluations : Baselines

B 8x8 Mesh:

Design Routing Minimal Theory Deadlock

Adaptivity Freedom Type

West-first Routing Parfial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance
Static-Bubble [6] Full Yes Flow-Control Recovery

Evaluations : Baselines

B 8x8 Mesh:

Design Routing Minimal Theory Deadlock

Adaptivity Freedom Type

West-first Routing Parfial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance
Static-Bubble [6] Full Yes Flow-Control Recovery

B 1024 Node Off-chip Dragon-fly:

Routing Minimal Deadlock
Adaptivity Freedom Type

UGAL [37] NO Dally Avoidance

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:
Bit-complement

~ 100

H

E. 75

o 50

3‘ 25

c

9 0

3 0.01 0.03 0.05 0.07 0.09 0.11

Inj. Rate (flits/node/cycle)

= UGAL_3VC UGAL_3VC FAVORS_NMin_1VC Minimal_1VC
SPIN Dally SPIN SPIN

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:
Bit-complement

~ 100

H

E. 75

o 50

3‘ 25

c

9 0

3 0.01 0.03 0.05 0.07 0.09

Inj. Rate (flits/node/cycle

FAVORS_NMin_1VC

=mm UGAL_3VC UGAL_3VC
SPIN

SPIN Dally

50% higher throughput
compared to UGAL_Dally

Minimal 1VC
SPIN

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:

Bit-complement Neighbor
100 P —~100
8 3
2 75 5 75
S >
o 50 o 50
>
3‘ 25 g 25
o 0 L 0
§ 0.01 0.03 0.05 0.07 0.09 A M1 ® 0.010.080.150.220.29 0.36

Inj. Rate (flits/node/cycle Inj. Rate (flits/node/cycle)
FAVORS_NMin_1VC Minimal_1VC

=mm UGAL_3VC UGAL_3VC
SPIN SPIN

SPIN Dally

50% higher throughput
compared to UGAL_Dally

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:

Bit-complement Neighbor
100 P —~100
A 0
2 75 5 75
3 S
o 50 o 50
>
3‘ 25 g 25
g 0 g 0
© 0.010030050070094\y1 3 0010080.150.220.7/0.36

Inj. Rate (flits/node/cycle Inj. Rate (flits/node// scle)

FAVORS_NMin_1VC

=mm UGAL_3VC UGAL_3VC
SPIN

SPIN Dally

50% higher throughput
compared to UGAL_Dally

25% higher throughput
compared to UGAL_Dally

Saturation Throughput

B 1024-node Oft-chip Dragon-fly:

Bit-complement Neighbor
100 compreme —~100
A o
=2 75 5 75
S >
o 50 o 50
>
3* 25 g 25
& 0 L2 0
§ 0.01 0.03//.05 0.07 0.09 {1 ® 0.010.080.150.220.7/0.36

flits/node/cycle Inj. Rate (flits/node// fcle)

FAVORS_NMin_1VC
SPIN

UGAL_3VC
Dally

62% higher
throughput compared to
Minimal Routing 1-VC

50% higher throughput
compared to UGAL_Dally

25% higher throughput
compared to UGAL_Dally

Saturation Throughput
B 8x8 On-chip Mesh:

Latency (cycles)

Saturation Throughput
B 8x8 On-chip Mesh:

Transpose (3-VC)

—

N o) ~ o
(6)) o &) o
|

0
0.001 0.031 0.061 0.091 0.121

Inj. Rate (flits/node/cycle)

West-First 3VC Static_Bubble_3VC
Dally Flow-Control

EscapeVC_3VC FAVORS_Min_3VC
Duato SPIN

Saturation Throughput

B 8x8 On-chip Mesh:

Transpose (3-VC)
100 ¥

~
6))

—
N
Q@
O
>
(&)
|
Y
Q
c
()
e
]

68% higher 1 0.091 0.121
throughput compared }qe/cycle)

to West-first 3-VC
Static Bubble 3VC

Dally Flow-Control

EscapeVC_3VC FAVORS_Min_3VC
Duato SPIN

Saturation Throughput

B 8x8 On-chip Mesh:

Transpose (3-VC)

100 -T

~
6))

tic Bubble 3VC
-Control

higher throughput
compared to Static-Bubble
3-VC

Esc 3VC

100 -1

Saturation Throughput
B 8x8 On-chip Mesh:

Transpose (3-VC)

-ContrBI

higher throughput
compared to Static-Bubble
3-VC

Esc
8% higher
throughput compared
to Escape-VC 3-VC

Saturation Throughput

B 8x8 On-chip Mesh:

Transpose (3-VC)

100 -1

Transpose (1-VC)

—h
o
o

~
6)

N
6))

0

higher throughput
compared to Static-Bubble
3-VC

Esc

-ContrBI

Latency (cycles)
o))
o

0.001 0.031 0.061 0.091 0.121
Inj. Rate (flits/node/cycle)

West-First 1VC
Dally

FAVORS_Min_1VC
SPIN

8% higher
throughput compared
to Escape-VC 3-VC

Saturation Throughput
B 8x8 On-chip Mesh:

Transpose (3-VC) Transpose (1-VC)

—h
o
o

—h
o
o
|
-
~
Ol

Latency (cycles)
o))
o

3

0
0.001 0.031 0.061

Inj. Rate (flits/n

.091 0.121

West-Firs
Dall

-Contr:)l

higher throughput
compared to Static-Bubble
3-VC

Esc 80% higher

throughput compared
to West-First 1-VC

8% higher
throughput compared
to Escape-VC 3-VC

Conclusion

Conclusion

B Deadlocks are a fundamental problem in
Inferconnection Networks.

Conclusion

B Deadlocks are a fundamental problem in
Inferconnection Networks.

B SPIN is a generic deadlock freedom theory
B Scalable: Distributed Deadlock Resolution
B Plug-n-Play: topology agnostic

B Enables frue one-VC fully adapfive roufing for any
topology

Conclusion

B Deadlocks are a fundamental problem in
Inferconnection Networks.

B SPIN is a generic deadlock freedom theory
B Scalable: Distributed Deadlock Resolution
B Plug-n-Play: topology agnostic

B Enables frue one-VC fully adapfive roufing for any
topology

B Performance (Saturation Throughput):
B On-chip mesh: upto 68% higher
B Off-chip Dragon-fly: upto 62% higher

Conclusion

B Practical Applications:

Conclusion

B Practical Applications:

On-Chip Mesh
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly
(Cray XC Networks)

Datacenters JellyFish (HP),
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific Corelink Interconnect (ARM)
Accelerators

Conclusion

B Practical Applications:

On-Chip Mesh
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly
(Cray XC Networks)

Datacenters JellyFish (HP),
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific Corelink Interconnect (ARM)
Accelerators

® Thank you !!

Back-up

SPIN : Applications

SPIN : Applications

B SPINis © deadlock freedom theory
B Scalable: distributed deadlock resolution

- doesn’t require knowledge of tfopology

SPIN : Applications

B SPINis © deadlock freedom theory

B Scalable: distributed deadlock resolution

- doesn’t require knowledge of tfopology
B SPIN can thus be used in:
u Mesh (Intel SCC, Tilera Tileé4)
-~ Dragon-fly (Cray XC Networks)
u . Jellyfish (HP), Fat Tree (Google)
B Static & Dynamically Changing due to

faults (Statfic Bubble [6]) & power-gating (Router Parking [29])

- (Opensmart [13]) & Domain specific
(Eyeriss[15])

L

Implementation Example : Probe Msg

) [

.

——
il

— 5—
il

— D j—

Implementation Example : Probe Msg.

Implementation Example : Probe Msg.

6

o

il

Counter
Expires at Node

1

5

—

—

il

Send Probe

4

Implementation Example : Probe Msg.

Counter
l l T I Expires at Node
- 5
Probe
REHEAE B _ l P
I L I l Send Probe
ic D

Implementation Example : Probe Msg.

Q—-—————L—PrObe l 6

Fom

Implementation Example : Probe Msg.

1 Probe

| |

2

3

.

3

L]

i

Implementation Example : Probe Msg.

—1 A

Probe
s _

2 |
L
| C

3

.
|
El 5
D B

Implementation Example : Probe Msg.

. .

Implementation Example : Probe Msg.

2_l N I l 5
I C |
s Probe| —
3 | 4

Implementation Example : Probe Msg.

_1[A FF

Implementation Example : Probe Msg.

Probe Returns:

— A Deadlock Confirmed

1 2 L F
s B e

5 " Probe 5

C D | |
3
I

Implementation Example : Move Msgq.

BRI
1. Counter Expires

2. Send Probe
3. Send Move

4. Counter expires
In spin cycle
5. Spin G

SRR
B |
[r——
R

Implementation Example : Move Msgq.

3. Send Move I 1

4. Counter expires
in spin cycle B
5. Spin e

e

L
R

I Send Move

O

| 1 |

Implementation Example : Move Msgq.

1 LA je—— F | ¢

3. Send Move I 1 T I

4. Counter expires

in spin cycle B | F

5. Spin e |

2 |
I l T I Send Move

3 D 4-

: |

Implementation Example : Move Msgq.

1. Counter Expires 1 L N | P — - 6
2. Send Probe
3. Send Move |
4. Counter expires B
In spin cycle I
5. Spin R | _ | E g

N

) [
et
EGRAR

Implementation Example : Move Msgq.

A))
Set counter to
3. Send Move |] _count to spin cycle
4. Counter expires ' —
in spin cycle B l e
5. Spin A E 5

Implementation Example : Move Msgq.

| I
A - [

1 Move . K
3. Send Move I 1 |
4. Counter expires B

In spin cycle I

5. Spin AR _ E c

2 | T l

3 e | D . B

: |

Implementation Example : Move Msgq.

l

- 6
3. Send Move
4. Counter expires

In spin cycle I
5. Spin e 5
Paiealan
4

Implementation Example : Move Msgq.

l
1 | 6
3. Send Move I |
4. Counter expires
In spin cycle I
5. Spin L 5
PEiaE el

Implementation Example : Move Msgq.

I
o PR e

1 | B 6
3. Send Move I]
4. Counter expires

In spin cycle I

5. Spin L | _ E 5

2 |

1 @ 1
y _ .

3 | | 4

Implementation Example : Move Msgq.
/ :

o PRI s
1 ‘ W

3. Send Move I
4. Counter expires

In spin cycle _
s.spn wm| | L——- .

l
-

Implementation Example : Move Msgq.

Eo

Y
I
(o))

3. Send Move
4. Counter expires

in spin cycle]
i AR
> Spin , —-I A
s
3 !

PN IENE
l

