
Synchronized Progress in
Interconnection Networks
(SPIN) : A new theory for

deadlock freedom

Aniruddh Ramrakhyani
Georgia Tech

(aniruddh@gatech.edu)

Tushar Krishna
Georgia Tech

(tushar@ece.gatech.edu)

Paul V. Gratz
Texas A&M University

(pgratz@tamu.edu)

ISCA 2018
Session 8B: Interconnection Networks

Network Routing
2

Network Routing
2

B

A

C

F

E

D

G

H

I

J

K

Network Routing
2

B

A

C

F

E

D

G

H

I

J

K

Network Routing
2

B

A

C

F

E

D

G

H

I

J

K

Network Routing
2

B

A

C

F

E

D

G

H

I

J

K

Deadlock

Routing Deadlocks
3

Routing Deadlocks
3

A

C D

B
E

F

Routing Deadlocks
3

A

C D

B

Deadlock

E

F

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

3

A

C D

B

Deadlock

E

F

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Cause system breakdown and kill chips.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Cause system breakdown and kill chips.

Deadlocks are hard to detect.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Cause system breakdown and kill chips.

Deadlocks are hard to detect.

Manifest after a long use time.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Cause system breakdown and kill chips.

Deadlocks are hard to detect.

Manifest after a long use time.

Show up due to system wear out faults and power-
gating of network elements which are hard to simulate.

4

Routing Deadlocks
A Routing Deadlock is a cyclic buffer dependency chain
that renders forward progress impossible.

Deadlocks are a fundamental problem in both off-chip
and on-chip interconnection networks.

Cause system breakdown and kill chips.

Deadlocks are hard to detect.

Manifest after a long use time.

Show up due to system wear out faults and power-
gating of network elements which are hard to simulate.

Need a solution for functional correctness !!

4

Solution I: Dally’s Theory
5

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5

A

C D

B
E

F

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5

A

C D

B
E

F
1

2

3

4
5

6

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5

A

C D

B
E

F
1

2

3

4
5

6

Higher
to Lower not

allowed

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

5

A

C D

B
E

F
1

2

3

4
5

6

Higher
to Lower not

allowed

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

6

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

Implementations: Turn model [5], XY routing, Up-
Down routing [20].

6

Solution I: Dally’s Theory
Defines a strict order in acquisition of links and/or
buffers which ensures a cyclic dependency is never
created.

Implementations: Turn model [5], XY routing, Up-
Down routing [20].

Limitations:

Routing Restrictions: Increased Latency,
Throughput loss, Energy overhead

Require large no. of VCs for fully adaptive
routing.

6

Solution II: Duato’s Theory
7

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

7

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

7

A

C D

B
E

F

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

7

A

C D

B
E

F

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

7

E

F
VC0

VC0

Escape-VC

Escape-VC

A

C D

B
E

F

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

7

E

F
VC0

VC0

Escape-VC

Escape-VC

A

C D

B
E

F

Solution II: Duato’s Theory
Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

7

E

F
VC0

VC0

Escape-VC

Escape-VC

Solution II: Duato’s Theory
8

Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

Solution II: Duato’s Theory

Limitations:

Energy and Area overhead of escape VCs.

Additional routing tables/logic for routing within
escape-VC.

8

Adds buffers to create a deadlock free escape path
that can be used to avoid/recover from deadlocks.

Implementation: turn restrictions in escape-VC.

Other Solutions
9

Other Solutions
Solution III: Flow Control

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

Limitation: Implementation Complexity.

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

Limitation: Implementation Complexity.

Solution IV: Deflection Routing

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

Limitation: Implementation Complexity.

Solution IV: Deflection Routing

Assign every flit to some output port even if they get
misrouted.

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

Limitation: Implementation Complexity.

Solution IV: Deflection Routing

Assign every flit to some output port even if they get
misrouted.

Implementation: BLESS [10], CHIPPER [35]

9

Other Solutions
Solution III: Flow Control

Restrict injection when no. of empty buffers fall
below a threshold

Implementation: Bubble Flow Control [9]

Limitation: Implementation Complexity.

Solution IV: Deflection Routing

Assign every flit to some output port even if they get
misrouted.

Implementation: BLESS [10], CHIPPER [35]

Limitation: Livelocks

9

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Theory

Metric

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Theory

Metric

1 6

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato

Theory

Metric

1 6
1 2

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato
Flow

Control

Theory

Metric

1 6
1 2

2 2

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato
Flow

Control
Deflection
Routing

Theory

Metric

1 6
1 2

2 2

1

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato
Flow

Control
Deflection
Routing

Theory

Metric

1 6
1 2

2 2

1

Can we do better ??

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato
Flow

Control
Deflection
Routing

Theory

Metric

1 6
1 2

2 2

1

Can we do better ??

Comparison of Deadlock Freedom Theories
10

 Acyclic
CDG not
Required

No Packet
Injection

Restrictions
Livelock

Free

VC cost for Mesh
Routing

Minimal Adaptive

Topology
Indepen-

dent

Dally

Duato
Flow

Control
Deflection
Routing

SPIN

Theory

Metric

1 6
1 2

2 2

1

1 1

Can we do better ??

Outline
Routing Deadlocks

State of the Art

Dally’s Theory

Duato’s Theory

Flow Control Routing

Deflection Routing

SPIN : Synchronized Progress in Interconnection Networks

Evaluations

Conclusion

11

SPIN : Key Idea
12

SPIN : Key Idea
12

A

C D

B

Deadlock

E

F

SPIN : Key Idea
12

A

C D

B

Deadlock

E

F

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

SPIN : Key Idea
12

A

C D

B

Deadlock

E

F

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

SPIN : Key Idea
12

A

C
DB Deadlock

E
F

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

SPIN : Key Idea
12

A

C
DB Deadlock

E
F

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

Simultaneous
Synchronized

Movement

SPIN : Key Idea
12

A

C
DB Deadlock

E
F

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

Simultaneous
Synchronized

Movement

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

SPIN : Key Idea
12

A

C

D

B
Deadlock

EF

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

Simultaneous
Synchronized

Movement

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

SPIN : Key Idea
12

A

C

D

B
Deadlock

EF

What if:
We coordinate the movement
of every packet to the next
hop at a given time ??

Simultaneous
Synchronized

Movement

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

spin
complete

SPIN : Key Idea
13

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

SPIN : Key Idea
13

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

Each spin leads to one hop forward movement
of all deadlock packets.

SPIN : Key Idea
13

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

Each spin leads to one hop forward movement
of all deadlock packets.

One spin may not resolve the deadlock. If so,
spin can be repeated

SPIN : Key Idea
13

Simultaneous Synchronized Movement of all
deadlocked packets in the loop is called a spin.

Each spin leads to one hop forward movement
of all deadlock packets.

One spin may not resolve the deadlock. If so,
spin can be repeated

Deadlock is guaranteed to be resolved in a
finite number of spins [proof in paper, Sec. III]

SPIN : Key Idea
14

SPIN : Key Idea
14

A

C D

B
E

F

SPIN : Key Idea
14

A

C

D

B

EF

First spin
complete

SPIN : Key Idea
14

A

C

D

B

EF

First spin
complete

SPIN : Key Idea
14

A

C

D

B

E

F

First spin
complete

SPIN : Key Idea
14

A

C

D

B

E

F

First spin
complete

Second spin
complete

SPIN : Key Idea
15

A

C

D

B

E

F

SPIN : Key Idea
15

A

C

D

B

E

F

SPIN : Key Idea
15

A

C

D

B

E

F

Packets E &B
exit the loop

SPIN : Key Idea
15

A

C

D

B

E

F

Packets E &B
exit the loop

Deadlock
Resolved

Outline
Routing Deadlocks

State of the Art

SPIN : Synchronized Progress in Interconnection Networks

Key Idea

Implementation Example

Micro-architecture

FAvORS

Evaluations

Conclusion

16

SPIN: Implementation Example
17

SPIN: Implementation Example
SPIN is a generic deadlock freedom theory that
can have multiple implementations.

17

SPIN: Implementation Example
SPIN is a generic deadlock freedom theory that
can have multiple implementations.

SPIN Implementation:

Detect the Deadlock.

Coordinate a time for spin.

Execute the spin.

17

SPIN: Implementation Example
SPIN is a generic deadlock freedom theory that
can have multiple implementations.

SPIN Implementation:

Detect the Deadlock.

Coordinate a time for spin.

Execute the spin.

We choose a recovery approach as deadlocks
are rare scenarios (See Sec. II-F).

17

Implementation Example : Detect Deadlocks
18

Implementation Example : Detect Deadlocks

Use counters.

18

Implementation Example : Detect Deadlocks

Use counters.

Placed at every node at design time.

18

Implementation Example : Detect Deadlocks

Use counters.

Placed at every node at design time.
Optimize by exploiting topology symmetry
(See Static Bubble [6]).

18

Implementation Example : Detect Deadlocks

Use counters.

Placed at every node at design time.
Optimize by exploiting topology symmetry
(See Static Bubble [6]).

If packet does not leave in threshold time
(configurable), it indicates a  
potential deadlock.

18

Implementation Example : Detect Deadlocks

Use counters.

Placed at every node at design time.
Optimize by exploiting topology symmetry
(See Static Bubble [6]).

If packet does not leave in threshold time
(configurable), it indicates a  
potential deadlock.

Counter expired ? Send probe to verify
deadlock.

18

Implementation Example : Probe Msg.
19

A

C D

B
E

F1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe
Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe
Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Probe Msg.
19

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Probe Returns:
Deadlock Confirmed

Implementation Example : Probe Msg.
20

Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer
dependency.

20

Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer
dependency.

Probe returns to sender:

20

Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer
dependency.

Probe returns to sender:
 Cyclic buffer dependence, hence
deadlock.

20

Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer
dependency.

Probe returns to sender:
 Cyclic buffer dependence, hence
deadlock.

Next, send a move msg. to convey the spin time

20

Implementation Example : Probe Msg.
Probe is a special message that tracks the buffer
dependency.

Probe returns to sender:
 Cyclic buffer dependence, hence
deadlock.

Next, send a move msg. to convey the spin time
Upon receiving move msg., router sets its
counter to count to spin cyle.

20

Implementation Example : Move Msg.
21

A

C D

B
E

F1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Send Move

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move

Send Move

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

FMove

Send Move

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

FMove

Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

FMove

Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move
Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move
Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : Move Msg.
21

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

Move returns

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : spin
22

A

C D

B
E

F1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : spin
22

A

C D

B
E

F

Counters expire
together in the spin

cycle

1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Implementation Example : spin
23

A

C

D

B

EF1. Deadlock  
Detection

2. Coordinating  
the spin.

3. Executing  
the spin.

Multiple SPIN Optimization
24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal
operation.

24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal
operation.

Counter expires again, process repeated.

24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal
operation.

Counter expires again, process repeated.

Optimization: send probe_move after spin is
complete.

24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal
operation.

Counter expires again, process repeated.

Optimization: send probe_move after spin is
complete.

probe_move checks if deadlock still exists
and if so, sets the time for the next spin.

24

Multiple SPIN Optimization
Resolving a deadlock may require multiple spins

After spin, router can resume normal
operation.

Counter expires again, process repeated.

Optimization: send probe_move after spin is
complete.

probe_move checks if deadlock still exists
and if so, sets the time for the next spin.

Details in paper (Sec. IV-B).

24

Outline
Routing Deadlocks

State of the Art

SPIN : Synchronized Progress in Interconnection Networks

Key Idea

Implementation Example

Micro-architecture

FAvORS

Evaluations

Conclusion

25

Implementation Micro-architecture
26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

Spl. Msgs. have higher priority in link usage over
regular flits.

26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

Spl. Msgs. have higher priority in link usage over
regular flits.

Links are anyways idle during deadlocks.

26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

Spl. Msgs. have higher priority in link usage over
regular flits.

Links are anyways idle during deadlocks.

Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

Spl. Msgs. have higher priority in link usage over
regular flits.

Links are anyways idle during deadlocks.

Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

Distributed Design: any router can initiate the
recovery.

26

Implementation Micro-architecture
No additional links: Spl. Msgs. use the same links as
regular flits.

Spl. Msgs. have higher priority in link usage over
regular flits.

Links are anyways idle during deadlocks.

Bufferless Forwarding: Spl. Msgs. are not buffered
anywhere (either forwarded or dropped).

Distributed Design: any router can initiate the
recovery.

4% area overhead compared to traditional mesh
router in 15nm Nangate [42].

26

Outline
Routing Deadlocks

State of the Art

SPIN : Synchronized Progress in Interconnection Networks

Key Idea

Walkthrough Example

Micro-architecture

FAvORS

Evaluations

Conclusion

27

FAvORS Routing Algorithm
28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive
Non-minimal Adaptive.

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive
Non-minimal Adaptive.

Route Selection Metrics:

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive
Non-minimal Adaptive.

Route Selection Metrics:
Credit turn-around time

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive
Non-minimal Adaptive.

Route Selection Metrics:
Credit turn-around time
Hop Count

28

FAvORS Routing Algorithm
SPIN is the first scheme that enables true one-VC fully
adaptive deadlock-free routing for any topology.

FAvORS : Fully Adaptive One-vc Routing with SPIN.

Algorithm has two flavors:
Minimal Adaptive
Non-minimal Adaptive.

Route Selection Metrics:
Credit turn-around time
Hop Count

More details in paper (Sec. V).

28

Outline
Routing Deadlocks

State of the Art

SPIN : Synchronized Progress in Interconnection
Networks

Evaluations

Conclusion

29

Evaluations
30

Simulator

Topologies

Link
Latency

Traffic

Network Configuration:

Evaluations
30

Simulator

Topologies

Link
Latency

Traffic

gem5 + Garnet 2.0 Network simulator

8x8 Mesh

1-cycle

Synthetic +
 Multi-threaded (PARSEC)

Network Configuration:

Evaluations
30

Simulator

Topologies

Link
Latency

Traffic

gem5 + Garnet 2.0 Network simulator

8x8 Mesh

1-cycle

Synthetic +
 Multi-threaded (PARSEC)

1024 node Off-chip
Dragon-fly

Inter-group: 1-cycle
Intra-group: 3-cycle

Synthetic

Network Configuration:

Evaluations : Baselines
31

Evaluations : Baselines
8x8 Mesh:

31

Design Routing
Adaptivity

Minimal Theory Deadlock
Freedom Type

West-first Routing Partial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance

Static-Bubble [6] Full Yes Flow-Control Recovery

Evaluations : Baselines
8x8 Mesh:

31

Design Routing
Adaptivity

Minimal Theory Deadlock
Freedom Type

West-first Routing Partial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance

Static-Bubble [6] Full Yes Flow-Control Recovery

1024 Node Off-chip Dragon-fly:

Design Routing
Adaptivity

Minimal Theory Deadlock
Freedom Type

UGAL [37] Full No Dally Avoidance

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

0
25
50
75

100

0.01 0.03 0.05 0.07 0.09 0.11

Bit-complement

La
te

nc
y

(c
yc

le
s)

Inj. Rate (flits/node/cycle)

UGAL_3VC
SPIN

UGAL_3VC
Dally

FAvORS_NMin_1VC
SPIN

Minimal_1VC
SPIN

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

0
25
50
75

100

0.01 0.03 0.05 0.07 0.09 0.11

Bit-complement

La
te

nc
y

(c
yc

le
s)

Inj. Rate (flits/node/cycle)

UGAL_3VC
SPIN

UGAL_3VC
Dally

FAvORS_NMin_1VC
SPIN

Minimal_1VC
SPIN

50% higher throughput
compared to UGAL_Dally

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

0
25
50
75

100

0.01 0.03 0.05 0.07 0.09 0.11

Bit-complement

La
te

nc
y

(c
yc

le
s)

Inj. Rate (flits/node/cycle)

0
25
50
75

100

0.01 0.08 0.15 0.22 0.29 0.36
Inj. Rate (flits/node/cycle)

Neighbor

La
te

nc
y

(c
yc

le
s)

UGAL_3VC
SPIN

UGAL_3VC
Dally

FAvORS_NMin_1VC
SPIN

Minimal_1VC
SPIN

50% higher throughput
compared to UGAL_Dally

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

0
25
50
75

100

0.01 0.03 0.05 0.07 0.09 0.11

Bit-complement

La
te

nc
y

(c
yc

le
s)

Inj. Rate (flits/node/cycle)

0
25
50
75

100

0.01 0.08 0.15 0.22 0.29 0.36
Inj. Rate (flits/node/cycle)

Neighbor

La
te

nc
y

(c
yc

le
s)

UGAL_3VC
SPIN

UGAL_3VC
Dally

FAvORS_NMin_1VC
SPIN

Minimal_1VC
SPIN

50% higher throughput
compared to UGAL_Dally

25% higher throughput
compared to UGAL_Dally

Saturation Throughput
1024-node Off-chip Dragon-fly:

32

0
25
50
75

100

0.01 0.03 0.05 0.07 0.09 0.11

Bit-complement

La
te

nc
y

(c
yc

le
s)

Inj. Rate (flits/node/cycle)

0
25
50
75

100

0.01 0.08 0.15 0.22 0.29 0.36
Inj. Rate (flits/node/cycle)

Neighbor

La
te

nc
y

(c
yc

le
s)

UGAL_3VC
SPIN

UGAL_3VC
Dally

FAvORS_NMin_1VC
SPIN

Minimal_1VC
SPIN

50% higher throughput
compared to UGAL_Dally

62% higher
throughput compared to

Minimal Routing 1-VC

25% higher throughput
compared to UGAL_Dally

Saturation Throughput
33

8x8 On-chip Mesh:

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

68% higher
throughput compared

to West-first 3-VC

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

68% higher
throughput compared

to West-first 3-VC

10%
higher throughput

compared to Static-Bubble
3-VC

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

68% higher
throughput compared

to West-first 3-VC

8% higher
throughput compared

to Escape-VC 3-VC

10%
higher throughput

compared to Static-Bubble
3-VC

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Transpose (1-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

FAvORS_Min_1VC
SPIN

West-First_1VC
Dally

68% higher
throughput compared

to West-first 3-VC

8% higher
throughput compared

to Escape-VC 3-VC

10%
higher throughput

compared to Static-Bubble
3-VC

Saturation Throughput
33

8x8 On-chip Mesh:

Transpose (3-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

West-First_3VC
Dally

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Static_Bubble_3VC
Flow-Control

EscapeVC_3VC
Duato

FAvORS_Min_3VC
SPIN

0

25

50

75

100

0.001 0.031 0.061 0.091 0.121

Transpose (1-VC)

Inj. Rate (flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

FAvORS_Min_1VC
SPIN

West-First_1VC
Dally

68% higher
throughput compared

to West-first 3-VC

8% higher
throughput compared

to Escape-VC 3-VC

80% higher
throughput compared

to West-First 1-VC

10%
higher throughput

compared to Static-Bubble
3-VC

Conclusion
34

Conclusion
Deadlocks are a fundamental problem in
Interconnection Networks.

34

Conclusion
Deadlocks are a fundamental problem in
Interconnection Networks.

SPIN is a generic deadlock freedom theory

Scalable: Distributed Deadlock Resolution

Plug-n-Play: topology agnostic

Enables true one-VC fully adaptive routing for any
topology

34

Conclusion
Deadlocks are a fundamental problem in
Interconnection Networks.

SPIN is a generic deadlock freedom theory

Scalable: Distributed Deadlock Resolution

Plug-n-Play: topology agnostic

Enables true one-VC fully adaptive routing for any
topology

Performance (Saturation Throughput):

On-chip mesh: upto 68% higher

Off-chip Dragon-fly: upto 62% higher

34

Conclusion
Practical Applications:

35

Conclusion
Practical Applications:

35

On-Chip Mesh
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly
(Cray XC Networks)

Datacenters JellyFish (HP),
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific
Accelerators

Corelink Interconnect (ARM)

Conclusion
Practical Applications:

35

On-Chip Mesh
(Intel SCC, Tilera Tile64)

Super-computers Dragon-fly
(Cray XC Networks)

Datacenters JellyFish (HP),
Fat Tree (Google)

Irregular Topologies Faults (Static Bubble [6])
Power-gating (Router Parking[29])

NoC Generators FlexNoc (ARTERIS),
Sonics GN

Domain specific
Accelerators

Corelink Interconnect (ARM)

Thank you !!

Back-up
36

SPIN : Applications
37

SPIN : Applications
SPIN is a generic deadlock freedom theory

Scalable: distributed deadlock resolution

Plug-n-Play: doesn’t require knowledge of topology

37

SPIN : Applications
SPIN is a generic deadlock freedom theory

Scalable: distributed deadlock resolution

Plug-n-Play: doesn’t require knowledge of topology

SPIN can thus be used in :

On-chip networks: Mesh (Intel SCC, Tilera Tile64)

Supercomputers: Dragon-fly (Cray XC Networks)

Datacenters: Jellyfish (HP), Fat Tree (Google)

Static & Dynamically Changing Irregular topologies due to
faults (Static Bubble [6]) & power-gating (Router Parking [29])

NoC Generators (Opensmart [13]) & Domain specific
accelerator (Eyeriss[15])

37

Implementation Example : Probe Msg.
38

A

C D

B
E

F

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe
Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe
Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Implementation Example : Probe Msg.
38

A

C D

B
E

F
Counter

Expires at Node
5

Probe

Send Probe

Probe Returns:
Deadlock Confirmed

Implementation Example : Move Msg.
39

A

C D

B
E

F1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Send Move

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move

Send Move

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

FMove

Send Move

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

FMove

Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

FMove

Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move
Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move
Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

Cntr

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

Implementation Example : Move Msg.
39

A

C D

B
E

F

Move

Send Move

Set counter to
count to spin cycle

Cntr

Move returns

1. Counter Expires
2. Send Probe
3. Send Move
4. Counter expires  

in spin cycle
5. Spin

