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Abstract—Recent studies have shown the potential of last-level
TLBs shared by multiple cores in tackling memory translation
performance challenges posed by “big data” workloads. A key
stumbling block hindering their effectiveness, however, is their
high access time. We present a design methodology to reduce
these high access times so as to realize high-performance and
scalable shared L2 TLBs. As a first step, we study the benefits
of replacing monolithic shared TLBs with a distributed set of
small TLB slices. While this approach does reduce TLB lookup
latency, it increases interconnect delays in accessing remote slices.
Therefore, as a second step, we devise a lightweight single-
cycle interconnect among the TLB slices by tailoring wires and
switches to the unique communication characteristics of memory
translation requests and responses. Our approach, which we dub
NOCSTAR (NOCs for scalable TLB architecture), combines the
high hit rates of shared TLBs with low access times of private
L2 TLBs, enabling significant system performance benefits.

Index Terms—Virtual memory, TLB, network-on-chip, caches.

I. INTRODUCTION

Memory-intensive workloads pose many performance chal-
lenges for modern computer systems. One important chal-
lenge is the question of how to achieve efficient virtual-
to-physical address translation [1, 2]. Efficient Translation
Lookaside Buffers (TLBs) are central to achieving fast address
translation. TLB performance depends on three attributes –
access time, hit rate, and miss penalty. Recent studies improve
TLB hit rates with techniques that use hardware-only or
hardware-software co-design approaches like sub-blocking [3],
coalescing [4–6], clustering [7], part-of-memory optimizations
[8, 9], superpages [10–14], direct segments [15, 16], and range
translations [17, 18]. Others have used prefetching and spec-
ulative techniques to support the illusion of higher effective
TLB capacity [11, 19–26]. Similarly, synergistic TLBs, which
evict translations between per-core TLBs, can improve hit
rates [27]. Other studies have focused on reducing TLB miss
penalties [28–33]. Finally – and most pertinently to this study
– shared last-level TLBs have been proposed to improve the
overall hit rate by avoiding replication of shared translations
that occur in multi-threaded programs or multi-programmed
workloads using shared libraries and OS structures [19, 34] .
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Unfortunately, many of these approaches side-step the at-
tribute of TLB access time. Consider, for example, shared
TLB organizations. Processor vendors implement two-level
TLBs private to each core today. However, recent academic
work has shown that replacing them with an equivalently-sized
shared (among cores) L2 TLB eliminates as much as 70-90%
of the page table walks on modern systems [34]. However,
sharing also results in larger structures that are physically
further from cores, resulting in longer access latency. Recall
that address translation latency is on the critical path of every
L1 cache access. Consequently, a TLB with more hits may not
be attractive if each hit actually becomes slower. As memory
demands continue to increase, improving TLB reach without
significantly increasing access time is a key research challenge.

Our goal is to translate the hit rate benefits of shared TLBs
to overall runtime speedup. This requires a conceptual re-
think of how architects build scalable shared TLB hierarchies.
The challenge with a multi-banked monolithic shared L2
TLB structure is that it suffers from high latency. A natural
alternative is a distributed shared L2 TLB, akin to NUCA
LLCs. Each distributed shared TLB slice can be made small to
keep access latency low. Unfortunately, this makes TLB access
non-uniform, depending on the location of the slice where the
translation is cached. Our studies on a 32-core Haswell system
show that a distributed shared L2 TLB consequently degrades
performance by 7%, despite having 70% fewer misses on
average than private L2 TLBs. This is because TLB accesses
are more latency critical than data cache accesses.

We propose NOCSTAR (NOCs for scalable TLB
architectures), a design methodology to architect scalable
low-latency shared last-level TLBs. NOCSTAR relies on the
latency characteristics of on-chip wires and the bandwidth
characteristics of address translation requests to realize
a lightweight specialized interconnect that provides near
single-cycle access to remote shared TLB slices, however
far they may be on-chip. Consequently, NOCSTAR provides
the hit rate benefits of shared TLBs at the access latency of
private TLBs via the following features:

1 High capacity: NOCSTAR offers higher hit rates than private
L2 TLBs by eliminating replication and improving utilization.

2 Low lookup latency: NOCSTAR achieves low lookup la-
tency by replacing a monolithic shared L2 TLB structure with



smaller TLB slices distributed across cores.

3 Low network latency: NOCSTAR employs a light-weight
interconnect to connect cores to the distributed TLB slices.
This interconnect provides near single-cycle latencies from any
source to any remote TLB, reducing network traversal latency.

The confluence of these features enables NOCSTAR to
offer within 95% of the performance of an ideal, zero-
interconnect-latency shared TLB. With an area-equivalent con-
figuration∗, NOCSTAR outperforms private L2 TLBs on 16-64
core Haswell systems by an average of 1.13× and up to 1.25×
across a suite of real-world workloads.

II. BACKGROUND AND MOTIVATION

While NOCSTAR is applicable to both instruction and data
TLBs, we focus on the latter. Our focus is driven in part by
the fact that the data-side TLB pressure is growing with the
prevalence of big-data workloads [4, 14–16, 18, 24, 35–38].

Fig. 1 summarizes the TLB architectures considered in this
study. Fig. 1(a) shows conventional private L2 TLBs, while
Fig. 1(b) shows the shared L2 TLB alternative proposed in
prior work [19, 34, 39]. As we scale the size of the shared
TLB, a practical design would involve banking this monolithic
structure, as shown in Fig. 1(c). We evaluate this design and
ultimately find that distributing the TLB slices across cores
(see Fig. 1(d)) with a fast NOC is a better choice. Throughout
this paper, we use the term TLB access latency to refer to
TLB’s SRAM lookup latency + interconnect latency.

A. Limitations of Private TLBs and Promise of Shared TLBs

Private two-level TLBs are a staple in modern server-class
chips like Intel’s Skylake or AMD’s Ryzen processors. For
example, Intel’s Skylake chip uses 64-entry L1 TLBs backed
by 1536-entry, 12-way set associative L2 TLBs per core.
Unfortunately, private L2 TLBs suffer from the classic pitfalls
of private caching structures – i.e., replication and poor utiliza-
tion [34]. Consider the problem of replication. Multi-threaded
applications running on a multi-core naturally replicate virtual-
to-physical translations across private L2 TLBs as they are
part of the same virtual address space. Perhaps more surpris-
ingly, even multiprogrammed combinations of single-threaded
programs exhibit replication as different processes can share
libraries and OS structures [34]. Private L2 TLBs also suffer
from poor utilization because chip-wide TLB resources are
partitioned statically (usually equally) at design time. But this
means that there are situations where, at runtime, a private L2
TLB on one core may thrash while its counterpart on another
core may experience far less traffic [34].

Recent work has evaluated the potential of shared last-level
TLBs (which we call shared L2 TLBs) [34]. Shared L2 TLBs
eliminate the redundancy of private L2 TLBs and seamlessly
divide TLB resources to cores based on their runtime demands,
overcoming the problem of poor utilization. Shared TLBs

∗We conservatively reduce TLB sizes to account for our interconnect area
to ensure area-equivalence between a baseline design with per-core L2 TLBs
and our approach with a shared last-level TLB.

also offer implicit prefetching benefits; i.e., a thread on one
core can demand (and hence prefetch) translations eventually
required by threads on other cores. The original paper finds
that shared TLBs eliminate as much as 70-90% of the misses
suffered when using private L2 TLBs [34].

B. Shared L2 TLB Hit Rate

Fig. 2 quantifies the benefits of shared L2 TLBs on an Intel
Haswell system described in Section IV. Fig. 2 shows that
shared L2 TLBs eliminate the majority of L2 TLB misses
suffered by private TLBs. Note that for every one of our
workloads, the entire private L2 TLB is used to store entries
– that is, no translations are wasted. Furthermore, like prior
work [4, 34], we found that private L2 TLB miss rates range
from 5-18%. Naturally, the main reason these miss rates are
harmful is the fact that each TLB miss is a long-latency event.

Generally, the higher the core count, the more effectively the
shared L2 TLB eliminates private L2 TLB misses. Consider,
for example, a situation with 4 cores, and one with 16 cores.
If private TLBs are N entries, the 4-core case can replace the
private L2 TLBs with a shared L2 TLB with 4×N entries. A
16-core case can realize a 16×N-entry L2 TLB instead. We
are therefore able to eliminate the replication and utilization
problems of private TLBs even more effectively at higher core
counts. Workloads with notably poor locality of access (e.g.,
canneal, gups, and xsbench) are particularly aided by
shared TLBs at higher core counts.

C. Shared TLB Access Time

One might expect the hit rate improvements of Fig. 2 to
improve performance overall. However, TLB performance is
influenced not just by hit rates, but also the following:

1 SRAM array lookup times: L2 TLBs are typically imple-
mented as SRAM arrays. Unfortunately, scaling SRAM arrays
while ensuring fast access is challenging. We model SRAMs in
TSMC 28nm technology node using memory compilers. Fig. 3
quantifies access latency scaling as a function of the number of
entries in the array (all numbers are post-synthesis). A 1536-
entry L2 TLB (the size of private L2 TLBs in Intel Skylake)
takes 9 cycles, while a 32×1536-entry design takes close to 15
cycles to access. Replacing private TLBs with an equivalently-
sized shared TLB means that the shared structure grows from
a 12K-entry structure for 8 cores (8×1536 entries) to a 96K-
entry structure for 64 cores (64×1536 entries), increasing
lookup times by factors of 2-4× Ultimately, this high access
latency – which worsens as we need larger shared TLBs for
higher core counts – counteracts the benefits of higher hit rates.

2 Interconnect traversal times: The original paper on shared
TLBs focused on monolithic designs where the entire structure
was placed at one end of the chip [34]. Naturally, this design
exacerbated access times further, due to additional interconnect
delays to access the shared TLB location. This was observed
to counteract the benefits in some cases even for a 4-core
system [34]. Higher core counts further worsen this delay. For
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Fig. 2: Percentage of private L2 TLB misses eliminated by replacing
with a shared TLB. Results shown for 16-64-core systems.
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Fig. 3: Access latency of SRAM TLB compared to number of entries
in a TLB. Post-synthesis in 28nm TSMC PDK.

instance, for a 64-core system, the tiles at the top of the chip
would require 8 hops in each direction to access the TLB.

3 Bandwidth: A problem with the original shared TLB
proposal is that accesses from multiple cores suffer from
contention at the shared structure’s access ports. While we
will show that the likelihood of many concurrent TLB accesses
is relatively low, it can still decrease performance versus the
private L2 TLB scenario, where each core can access its
private TLB without interference from other cores.

D. Shared TLB Performance

Fig. 4 quantifies how attributes 1 - 3 counteract higher
hit rates in determining the overall performance of shared
monolithic L2 TLBs. We profile performance on a 32-core
Haswell system using monolithic shared L2 TLBs versus
private L2 TLBs. Based on our SRAM array memory compiler
studies with 28nm TSMC, we determine that the private L2
TLBs have 9-cycle lookup times. These are consistent with
other references that measure Haswell TLB lookup times and
Intel’s product manuals, which state that private L2 TLB
lookup latencies are 7-10 cycles [40]. For the shared L2 TLB,
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Fig. 4: Speedups using shared multi-banked TLBs over private L2
TLBs. Shared TLB access latencies varies from 25 to 9 cycles.

we vary the total access latency from 9 cycles (an unrealizable
ideal case where the 32× larger SRAM array has access
times that match the private L2 TLBs and the interconnect
is zero-latency) to 25 cycles (a more reasonable estimate of
the larger SRAM array plus interconnect latency). We bank the
shared L2 TLB; we study designs with 16, 32, 64, and 128
banks. We plot results from the highest-performing banking
configuration for each workload. Section IV describes the rest
of the system configuration. Our experiments assume Linux
4.14 with support for transparent superpages [4, 5]. We find
that over half of the memory footprint of the workloads are
implemented as superpages (see Section V for more details).

Fig. 4 shows that despite better hit rates, the monolithic
shared TLB can perform poorly. For example, at 25-cycle
access latency, we see a 10-15% performance dip versus
private L2 TLBs. Even worse, consider an unrealizable ideal
network with zero interconnect latency (i.e., the only latency
arises from port contention and SRAM array latency), which
corresponds to the scenario where the shared L2 TLB access
takes 16 cycles. Even here, the shared TLB shows little to no
speedup over private L2 TLBs.

E. Understanding Shared L2 TLB Access Patterns

We now study key aspects of shared TLB access patterns
that can help us overcome access latency problems.

Shared L2 TLB contention across applications. Fig. 5
captures information about contention at the shared L2 TLB.
For every shared L2 TLB access, we plot the number of other
cores with outstanding shared L2 TLB accesses. Fig. 5 shows
that more than 40% of the L2 TLB accesses occur in isolation;
i.e., there is no other outstanding TLB access. Roughly another
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Fig. 5: Fraction of L2 TLB accesses that occur concurrently with 1
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with 1 other access, 2-4 other accesses, etc. Each bar averages results
across workloads; (right) fraction of L2 TLB accesses to a TLB slice
that occurs concurrently with 1 other access to that slice, 2-4 other
accesses to that slice, etc. Each bar shows a distributed shared L2
TLB, where the number of TLB slices is equal to the number of cores.

20-30% of the L2 TLB accesses occur when there are only
2-4 outstanding shared L2 TLB lookups.

Shared L2 TLB contention with varying L1 TLB size. The
larger the L1 TLB, the fewer the shared L2 TLB accesses.
Fig. 6 (left) shows the impact of the L1 TLB size on shared
L2 TLB contention. The baseline bar matches the average
access distribution from Fig. 5, while the 0.5×L1 and 1.5×
bars represent distributions as the private L1 TLBs per core are
halved or increased by 50%. As one might expect, smaller L1
TLBs lead to more shared L2 TLB lookups. Consequently,
the 2-4 access and 5-8 access portions of the bars
increase significantly, implying greater contention. More inter-
esting however are the trends towards bigger L1 TLBs as this
reflects the direction processor vendors are going in. When
we increase the L1 TLB sizes by 50%, we see contention
dropping, with the 1 access case dominating and taking
up roughly 50% of the shared L2 TLB accesses.

Shared L2 TLB contention with varying core counts.
Finally, Fig. 6 also shows the impact of core count on shared
TLB contention. The baseline represents 32-core Haswell;
0.5×L1 and 1.5× are for 32-core Haswell with half and 1.5
times the baseline L1 TLB size. The 64-512 core results
assume 64- to 512-core Haswell systems and we expect shared
L2 TLB contention to increase with a higher number of core
counts. However, not only does contention not increase at 64
cores, it only marginally increases at 128 cores (i.e., the 5-8
accesses and 9-12 accesses contributions increase by
roughly 10% and 5% respectively). Only when we begin

to approach 256 cores and beyond does contention visibly
increase. However, we have also performed experiments where
we have replaced the monolithic (banked) shared L2 TLB with
a distributed shared L2 TLB, where the number of L2 TLB
slices equals the core count. The graph on the right in Fig. 6
showcases our results, this time quantifying the contention on
average per TLB slice. As shown, even with high core counts
(256-512 cores), roughly 60% of accesses to a single L2 TLB
slice suffer no contention with concurrent accesses.

Takeaways. L2 TLBs must be accessed quickly for perfor-
mance but concurrent accesses are rare. This is true not just
for system configurations today, but would continue to remain
true and in fact drop further in future systems with larger
L1s or more cores. Later in Section V, we also validate this
observation for a TLB miss ”storm” microbenchmark (where
we deliberately create high L1 TLB miss situations). This
conceptual underpinning motivates our work - we design a
specialized interconnect optimized for low latency rather than
high bandwidth to accelerate shared L2 TLB access.

F. Low-Latency Interconnects

On-chip wire delay. As technology scales, transistors become
faster but wires do not [41], making wires slower every
generation relative to logic. This fact prompted research into
NUCA caches [42, 43]. However, since clock scaling has
also plateaued, wire delay in cycles remains fairly constant
across generations. Long on-chip wires have repeaters at
regular intervals, and take 75-100 ps/mm [41, 44, 45]. Thus
it is possible to perform a 1-cycle traversal across the
chip in modern technology nodes, as recent chips have
demonstrated [44, 45].

NOC traversal delay. The network latency (T) of a message
in modern NOCs is denoted as [46]:

T = H × (tr + tw) +

H∑
h=1

tc(h) + Ts

H is the number of hops required to reach the destination,
tr is the router delay, tw is the wire delay, tc(h) captures
the contention at each router, and Ts is the serialization delay
incurred when sending a wide packet over narrow links. The
latency is directly proportional to H .

Challenges with designing low-latency NOCs. It is usually
difficult to build NOCs optimized for latency, bandwidth,
area and power (see Table I). Buses do not scale and each
traversal is a broadcast. Meshes are the most popular due
to their simplicity and scalability, as they rely on a grid
of short links with simple routers (with low tr) at cross-
points. However, the average hop count H (and therefore
latency) is increased. High-radix NOC topologies (such as
FBFly [47]) add long-distance links between distant routers,
reducing H . However, these naturally add more links (i.e.,
bandwidth), leading to high area and power penalties from
multi-ported routers and crossbars. If we use a narrower
datapath (i.e., reduced bandwidth), we can reduce area and



TABLE I: TLB Interconnect Design Choices.
NOC Latency Bandwidth Area Power
Bus 3 7 3 7

Mesh 7 3 7 7
FBFly-wide [47] 3 33 77 77

FBFly-narrow 7 3 7 7
SMART [48] 3 3 7 7

NOCSTAR 3 3 3 3

power to that of a mesh, but serialization delay Ts leads to
higher latencies. Optimizations such as SMART [48] fall in
between these extremes by enabling packets to dynamically
construct bypass paths over a mesh, reducing the effective H .
However, the paths are not guaranteed, and require expensive
control circuitry to setup and arbitrate for, leading to false
positives and negatives [48]. Moreover, buffers at routers in a
Mesh, FBfly and SMART add high area and power overheads.
NOCSTAR proposes an interconnect with tr = 0, H = 1, and
tw = 1, as we describe in the next section.

III. NOCSTAR DESIGN

Our approach, NOCSTAR, organizes the SLL TLB as a
distributed array of TLB slices to reduce lookup latency,
connected by a configurable single-cycle network fabric to
reduce interconnect latency.

A. TLB Organization: Distributed TLB slices

NOCSTAR is a logically shared last level TLB distributed
across the tiles of a many-core system, mirroring the design
of NUCA LLCs [42]. Each slice is the equal or smaller than
the size of current private L2 TLBs, thereby meeting the same
area and power budgets.

• TLB Entries: Each entry in a slice includes a valid bit, the
translation and a context ID associated with the translation.

• Indexing: Although optimized indexing mechanisms can
be adopted for better performance, we use a simple index-
ing mechanism using bits from virtual address.

B. TLB Interconnect

We develop a dedicated side band NOC for communicating
between the L1 TLBs and L2 TLB slices. Section II-F and
Table I showed that directly adopting NOCs used between
data caches today is not desirable for a TLB interconnect.
Instead, we develop a latchless, circuit-switched interconnect
that can provide single-cycle connectivity between arbitrary
source-destination pairs.

1) Datapath: Latchless Switches: The datapath in NOC-
STAR leverages the fact that wires are able to transmit signals
over 10+ mm within a GHz (Section II-F). To enable single
cycle traversal of packets in NOCSTAR, we add a latchless
switch next to each L2 TLB slice as shown in Fig. 7(a). The
switch is simply a collection of muxes (see Fig. 7(c)). The
muxes are pre-set before a message arrives, as we will describe
in Section III-B2. Fig. 7(b) shows a request arriving from the
West direction traversing the switch and directly getting routed
out of the South direction, as selected by the multiplexers,

without getting latched. A message gets latched only at the
destination switch where it needs to be ejected out to the target
L1 TLB or L2 TLB slice. For example, an L1 TLB at the top
left corner can send a request within one cycle to the L2 TLB
slice at the bottom right, as Fig. 7(b) highlights. Each mux
acts a like a repeater, and the entire traversal is similar to that
of a conventional repeated wire [44, 45].

Bandwidth: This datapath is naturally lower bandwidth than a
Mesh or FBFly as it does not have any buffers internally within
the NOC. Moreover, unlike a FBfly which has more links,
it cannot support multiple simultaneous transmissions unless
they are using completely separate set of links. However, as
we demonstrated earlier in Section II-E, L1 TLB misses are
infrequent – there is only one access 60% of the time, and 1-4
accesses 80% of the time, making this low-bandwidth NOC
sufficient for our purpose.

Scalability: Each traversal over this network takes a single-
cycle. For large chips running at very high frequencies, this
might be multiple cycles by adding pipeline latches as we
discuss in Section III-B3.

2) Control Path: Fine-Grained Circuit-Switching: We now
describe the steps involved in sending the messages.

Path setup. For each traversal through the interconnect, all
data links in the path have to be acquired before sending
any kind of message. To ensure that the packet reaches the
destination in a single cycle, all links in the path must be
acquired in the same cycle. This is done using separate control
wires. Each data link has an associated arbiter which can
allocate the link to one of the requesting cores. Fig. 8 shows
an example of a core sending requests to all link arbiters in
its path and receiving grants from each link arbiter before
traversing the path. If any requester fails to acquire all the
links in the desired path, because of any contention, it will
wait and try again in the next cycle. This ensures that there are
no packets traversing partial paths and thus avoids complexity.
Once a path is acquired, the message can traverse through the
datapath as shown in Fig. 7(b).

Fanout from switch. Each core has must have a way to setup
a path to any of the slice present in the system. The width
of the control wires for each arbiter depends on the routing
policy adopted by the TLB system at design time. Consider
an XY based policy in a system as shown in Fig. 7(d).
Each core is connected to the arbiter associated with a link
through which the core can send a request. Thus, the number
of wires going out of each core is (num cores each row−
1) + ((num rows− 1)× (num columns)).

Link arbiters. Each network link has an associated arbiter
residing near the switch. The arbiter gets requests from any
core which can send a TLB request/response packet through
the link. This arbiter then selects one of the requesting cores
and grants the link to it for the next cycle by setting the output
mux to receive from the appropriate input port, and sending a
1-bit grant back to the requester, as shown in Fig. 8.
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Fig. 9: Place-and-routed NOCSTAR tile in 28nm TSMC with the L2
TLB SRAM, switch and link arbiters highlighted and power/area of
a switch and link arbiters for each slice in comparison to a SRAM
based TLB slice. Target Clock Period = 0.5ns.

Fanin at link arbiters. Depending on its physical location
on-chip and the routing policy, different arbiters will have
different number of requests coming in. For example, suppose
we only allow XY routing. Fig. 7(d) shows that the green
Arbiter A for an X link can only have one requester, while
the red Arbiter B for a Y link has six possible requesters.

Arbitration priority. As the arbitration for each link is
decentralized, there could be a possibility of livelock if two or
more requests only acquire a partial set of links during each
arbitration. To avoid this, the arbiters follow a static priority
order among the requesters, to allot the links. In other words,
a requester with higher priority will be guaranteed to get all its
requested links. Further to avoid starvation, the static priority
changes in a round-robin fashion every 1000 cycles.

3) Implementation: We implemented the NOCSTAR inter-
connect in TSMC 28nm with a 2GHz clock. Fig. 9 shows the
place-and-routed design. We observe the following.

Core
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L2 TLB 
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L1 
TLB

Insert
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Path
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L1 
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L2 TLB Slice               
Access

Path
Setup

0 1 2 3 12 13

Fig. 10: Timeline of a virtual address translation in case of an L1
TLB miss and remote L2 TLB access in NOCSTAR.

Critical path. There are two sets of critical paths in the
interconnect. On the datapath, a multi-hop traversal through
all the intermediate switches needs to be performed within
one clock cycle. Recall that the TLB interconnect is created
at design-time. If timing is not met at the desired clock
frequency, pipelined latches can be added at the maximum
hops per cycle (HPCmax) [48] boundaries. This will increase
the network traversal delay, but does not affect the operation of
the design. Moreover, as core counts increase and tiles become
smaller, the maximum hops per cycle will actually go up. On
the control path, the critical path consists of the path setup
request to the furthest link arbiter, link arbitration, and the
grant traversal back to the core (Fig. 8). We observed that the
place-and-route tool placed all the arbiters close to the center
of the design to reduce the average wire lengths to meet timing.

Area and power. Fig. 9 shows the post-synthesis power
and area consumed by the NOCSTAR switch and arbiter. We
contrast it with the cost of the L2 TLB SRAM present in the
same tile. The area consumed by switch and arbiter is less
than 1% of the tile’s L2 TLB SRAM. The link arbiters, due
to high fanin and tight timing, are the most power hungry
component and key overhead. We can reduce this overhead
by restricting the routing algorithm (and correspondingly the
fanin), as discussed earlier in Section III-B2.

C. Timeline of L2 TLB Access in NOCSTAR

Fig. 10 presents a timeline of address translation when there
is an L1 TLB miss.



L1 TLB miss. The L1 TLB miss triggers a circuit-switched
path setup. The path setup can be performed speculatively
during the L1 TLB access as well.

Request path setup. The remote TLB slice to which the
translation is mapped is identified by the indexing. A path
setup request is then sent to the arbiters of the links in the
path. The grants from all the requests are ANDed to determine
if the full path was granted or not. If not, the path setup is
retried. If the full path is granted, the request is sent out.

Request traversal. The TLB request is forwarded to the
switch connected to the TLB slice (Fig. 7(a)). No header or
routing information needs to be appended, since the path is
already setup. The request takes a single-cycle through all the
intermediate switches, and is latched at the remote TLB slice
and enqueued into its request queue.

L2 TLB slice access. The remote TLB slice receives the
request and services the request. The translation may either
exist or not. If it is a TLB hit, a response should be sent. The
response contains the physical page associated with the virtual
address in the request. A TLB miss would lead to a page walk
which is discussed in Section III-F.

Response path setup. A circuit-switched path for the response
is requested. The response path can be setup speculatively,
during the L2 TLB lookup, as a response will be sent to the
requester regardless of access result.

Response traversal. The response traverses the TLB intercon-
nect within a single-cycle.

L1 TLB insertion The requested translation is inserted into
the requesting L1 TLB if it was a hit.

D. L2 TLB Access Latency and Energy

We quantify NOCSTAR’s latency and energy benefits versus
monolithic and distributed shared TLBs. Fig. 11(a) shows the
latency of a message when traversing different number of hops
through the TLB interconnect in the different shared last-level
TLB designs. We consider two cases:

Case 1: The requested translation is indexed in the slice of the
requesting core: The virtual address is used to index into the
SLL slice in the local node and the translation is returned to L1
TLB. The total latency incurred is equal to lookup latency
of the TLB slice for both Distributed and NOCSTAR designs.
This is identical to private last-level TLB latency.

Case 2: The requested translation indexes to a remote slice:
The required translation request is sent to the remote node
containing the slice through a dedicated network. Once it
reaches the destination node, the virtual address is used to
index into the SLL slice and the translation is then sent back to
the requesting slice. Upon receiving the translation response,
the requesting core can then forward the translation to the
L1 TLB. The total latency in this case is lookup latency +
network latency. Here, NOCSTAR provides a latency advan-
tage over both Monolithic and Distributed. Even when the

maximum hops per cycle HPCmax in NOCSTAR goes down,
it is still much faster than the distributed case.

Fig. 11(b) shows the energy consumed by a message
when traversing different number of hops through the TLB
interconnect to understand trade-off spaces among the shared
TLB designs. Most of the energy savings for the distributed
design and NOCSTAR come from accessing a smaller SRAM
structure than a monolithic(M) SLL TLB. Further, on the
datapath, because of circuit switching, the energy consumed
by an intermediate switch in NOCSTAR (N) is less compared
to a switch in a traditional distributed network (D) with multi-
cycle hops. However, NOCSTAR has a more expensive control
path because of multiple request and grant wires spanning to
all the link arbiters for simultaneous arbitration (Fig. 8). For
instance, to traverse 14 hops within a cycle, NOCSTAR will
require 14 links to be arbitrated for simultaneously. This shows
up as a slightly higher control cost than Distributed. However,
the latency gains from this approach leads to an overall energy
savings, as we discuss in Section V.

E. Insertion/Replacement Policy

Like recent studies on TLB architecture, we assume that
L1 and L2 TLBs use the lower-order bits of the virtual page
number to choose the desired set using modulo-indexing, and
use LRU replacement [4, 5, 7, 10, 11, 21, 24, 28]. Furthermore,
like all recent work on two-level TLBs [4, 5, 7, 11, 34], we
assume that the L1 and L2 TLBs are mostly-inclusive. Like
multi-level caches, mostly-inclusive multi-level TLBs do not
require back-invalidation messages [49].

F. Handling Page Table Walks

Suppose that a core suffers an L1 TLB miss and must
look up the shared last-level L2 TLB. Suppose further that it
determines that the TLB slice housing the desired translation
lies on a remote node. If lookup of the remote node’s TLB
slice ultimately results in a miss, there are two options for
performing the resulting page table walk. In the first option,
the remote slice can send a miss message back to the requester
node, which must now perform the page table walk. In the
second option, the remote node can itself perform the page
table walk. Both approaches have pros and cons. Handling
page table walks at the remote node is attractive in that it
eliminates the need for a miss message to be relayed between
the remote and requester nodes. However, handling page table
walks on the remote node also increases the potential for page
table walker congestion; i.e., if multiple core’s send requests
to a particular remote slice and all of them miss, page table
walks can be queued up.

G. TLB Shootdowns

A key design issue involves how NOCSTAR responds to
virtual memory operations performed by the OS. In particular,
consider a situation where a page table entry is modified by
the OS on a particular core. When this happens, the OS kernel
usually launches inter-processor interrupts (IPIs) that pause
other cores and run an interrupt handler that ”shoots down”



5

10

15

20

25

30

35

40

0 1 2 4 6 8 10 12

C
yc

le
s

Hops

Access Latency Network Latency

(a) Monolithic - Multi-Cycle Interconnect

(b) Distributed - Multi-Cycle Interconnect
(c) NOCSTAR - HPCmax=4

(d) NOCSTAR - HPCmax=8
(e) NOCSTAR - HPCmax=16

a

b

c
d e

(a) (b) (c)

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

%
 M

es
sa

ge
s 

in
 N

O
C

ST
A

R
w

it
h

 N
o

 C
o

n
te

n
ti

o
n

La
te

n
cy

(C
yc

le
s)

Injection Rate

No contention delay Multi-hop Mesh NOCSTAR Latency

0

20

40

60

80

100

120

M D N M D N M D N M D N M D N M D N M D N M D N

0 1 2 4 6 8 10 12

En
er

gy
(p

J)

Hops

Link Switch Control SRAM

Fig. 11: (a) Latency of each message in the TLB Interconnect in various configurations. (b) Energy consumed by each message in the TLB
Interconnect in various configurations. (M)onolithic, (D)istributed, and (N)OCSTAR vs number of hops (c) Average latency of messages with
respect to increasing injection rate in NOCSTAR interconnect compared to a multi-hop interconnect.

or invalidates the stale translation in the TLB [35–37, 50]. This
operation requires care in NOCSTAR – specifically, it is now
possible that multiple cores simultaneously relay a translation
invalidation signals to a single TLB slice that houses the stale
translation. This can quickly congest the system by cascading
TLB invalidation lookups of a single TLB slice.

We sidestep this by designating some node(s) as the inval-
idation leader(s). In other words, even though any core can
receive IPIs, and each core invalidates its private L1 TLB,
only specific cores are permitted to then relay invalidation
signals to the shared TLB. For example, if core 0 is con-
sidered the invalidation leader, any core that receives an IPI
has to relay a message to core 0. Core 0 in turn relays a
message to the relevant shared TLB slice to invalidate the stale
translation. The actual TLB invalidation process for NOCSTAR
from here on out mirrors that of a private L2 TLB. That is,
during a private L2 TLB invalidation event, accesses to other
translations in the private L2 TLB can be made; similarly,
during the invalidation of a shared L2 translation, accesses to
other translations (within the same slice or to other slices) are
permitted. In Section V, we study our approach. The ideal
scenario is a middle ground where the number of leaders is
far fewer than the core count, but where it is not so small that
the messages become congested at any particular leader core.

IV. METHODOLOGY

Simulation framework. We evaluate the benefits of NOCSTAR
using an in-house cycle-accurate simulator based on Simics
[51]. We model Intel Haswell systems [52] running Ubuntu
Linux 4.14 with transparent superpages (which is the standard
configuration). We model Intel Haswell cores with 32KB 8-
way L1 instruction/data caches with 4 cycle access times,
256KB 8-way L2 caches with 12 cycle access times, and
an LLC with 8MB per core and 50 cycle access times.
These parameters are chosen based on Haswell specification
parameters from the Intel manual [40, 52]. System memory is
2TB, with the workload inputs scaled so that each workload
actually makes use of the full memory capacity.

Our cores maintain private L1 TLBs for different page sizes;
i.e., 64-entry 4-way associative L1 TLBs for 4KB pages, 32-
entry 4-way L1 TLBs for 2MB pages, and 4-entry TLBs
for 1GB pages. As per Haswell specifications [40], our L1
TLBs are single-cycle and are accessed in parallel with the L1

caches using the standard virtually-indexed physically-tagged
configuration [10]. All L1 TLBs have two read ports and a
write port. Misses in the L1 TLB are followed by an L2 TLB
lookup. Our baseline assumes the Intel Haswell configuration
of private 1024-entry, 8-way associative L2 TLBs that can
concurrently support 4KB and 2MB pages. In our studies, this
baseline is 9 cycles based on post-synthesis SRAM numbers
we generate, which also matches data from Intel manuals [40].
We vary this L2 TLB organization and latency; furthermore,
we assume 2/1 read/write ports for each private L2 TLB and
per shared L2 TLB slice. Our simulator models the L2 TLBs
accesses as being pipelined, so one request can be serviced
every cycle [10, 53, 54]. Finally, we combine our simulation
framework with McPAT for energy studies [55].

Target configurations. Table II details the shared L2 TLB
configurations that we evaluate. The first approach we evaluate
is the standard monolithic approach posed in the original
shared L2 TLB study [34]. We have evaluated several banking
configurations for monolithic and settle on 4 banks for
16- and 32-core configurations, and 8 banks for 64 cores.
We evaluate this with a regular mesh, and a single-cycle
SMART NOC [48]. The second approach we study is a
distributed approach where the shared L2 TLB is made
up of an array of TLB slices placed near each core and
connected by a NOC. We consider two different types of
NOCs for shared distributed L2 TLBs: (a) Mesh (Multi-hop):
This involves a traditional 1-cycle router coupled with 1-
cycle link latency. To compete against a single-cycle-traversal-
based NOCSTAR, we place enough buffers and links in the
system to prevent link contention. Including any network
contention may further degrade performance of workloads
for traditional mesh networks. (b) NOCSTAR: A single cycle
traversal if there is no contention; otherwise waits for another
cycle as explained in Section III-B2; routing is XY-based.
Our NOCSTAR evaluations assume that each core maintains
a 920-entry (rather than a 1024-entry) shared TLB slice. This
is a conservative area-normalized analysis, even though our
interconnect consumes less than 1% area of each TLB slice.

Benchmarks. We use benchmarks from Parsec [56] and
CloudSuite [57] for our studies. Furthermore, we study the
performance of multi-programmed workloads by creating
combinations of 4 applications. Each application in a multi-



TABLE II: Major configurations of TLB that were simulated.
L2 TLB Entries

(8-way associative)
Physical

Org Interconnect

Private 1024 1 TLB
Per Core -

Monolithic
(Shared) 1024×NumCores Monolithic Mesh (Multi-Hop),

SMART
Distributed
(Shared) 1024×NumCores 1 slice

Per Core Mesh (Multi-Hop)

NOCSTAR 920×NumCores 1 slice
Per Core NOCSTAR
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Fig. 12: Speedups for monolithic, distributed, and NOCSTAR com-
pared to ideal case with zero interconnect latency to the shared L2
TLB. Results assume 16-core Haswell systems using only 4KB pages.
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Fig. 13: Complementary results to Fig. 12 but when Linux uses
transparent superpages for a mix of 4KB and 2MB pages.

programmed workload has 8 threads executing and scaled up
to use 2TB of memory.

V. EXPERIMENTAL EVALUATIONS

Performance. Fig. 12 shows performance results for a 16-core
Haswell configuration, assuming only 4KB pages. We plot
speedups versus a baseline with private L2 TLBs; i.e., higher
numbers are better (note that the y-axis begins at 0.8). Our
monolithic data corresponds to a monolithic banked shared
L2 TLB with access latencies determined from our circuit-
level studies (see Section IV). We also show a distributed
configuration as well an ideal case, where all shared TLB
accesses have zero interconnect latency. Note that the ideal
case does not imply an infinite TLB.

Fig. 12 shows that NOCSTAR achieves an average of 1.13×
and a max of 1.25× the performance of private L2 TLBs.
Importantly, this is better than any other configuration. In
fact, monolithic degrades performance versus private L2
TLBs because of the perniciously high access latency. While
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Fig. 14: (Left) Speedups for varying core counts for Linux with
transparent 2MB superpage support; and (right) percent of address
translation energy saved versus private L2 TLBs.

distributed partly helps, NOCSTAR achieves over 8%
additional performance and comes within 2% of ideal.

Fig. 13 shows performance with Linux’s native support for
transparent 2MB superpages. We found that Linux was able
to allocate 50-80% of each workload’s memory footprint with
superpages. One might expect superpages to reduce L1 TLB
misses, reducing the gains from NOCSTAR. We find, however,
even better performance with NOCSTAR in the presence of
superpages. This is because the workloads are so memory-
intensive (i.e., 2TB) that even with superpages, L1 TLB
misses/shared L2 accesses are frequent. However, superpages
do a good job of reducing shared L2 TLB misses, meaning that
L2 TLB access times become a bigger contributor to overall
performance. This explains why workloads such as xsbench
and gups achieve large speedups of 1.2×+. NOCSTAR also
outperforms monolithic and distributed with even
larger margins than when simply using 4KB pages.

Scalability. The graph on the left in Fig. 14 quantifies
speedups for varying core counts, when Linux supports trans-
parent 2MB superpages along with 4KB pages. We show
average, minimum, and maximum speedup numbers. In the
monolithic case, high hit rates are overshadowed by high
access times, particularly worsening performance at higher
core counts. Employing a distributed approach helps, but
NOCSTAR consistently outperforms other approaches.

Energy. Recent work shows that address translation can con-
stitute as much as 10-15% of overall processor power and
that the energy spent accessing hardware caches for page
table walks is orders of magnitude more expensive than the
energy spent on TLB accesses [58]. Using a shared TLB saves
address translation energy by eliminating a large fraction of
page table walks. Fig. 14 shows this, by plotting the percent of
energy saved versus a baseline with private L2 TLBs. Even the
monolithic approach eliminates roughly a third of address
translation energy. However, NOCSTAR eliminates even more
energy (as much as 60% on 64 cores). We have identified
several reasons for these energy savings. One source is that
NOCSTAR dramatically reduces runtime, thereby reducing
static energy contributions of our system. Another important
source of energy savings is that NOCSTAR reduces TLB misses
and the ensuing page table walks. This means that cache
lookups and memory references for the page table lookup are
eliminated. In practice, like prior work [25, 29], we have found
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Fig. 15: Speedup over baseline configuration with private L2 TLBs.
We show two monolithic approaches (with traditional multi-hop
mesh and SMART, as well as an ideal NOCSTAR, where we have
no contention on the interconnect. We compare this to an ideal
case where the TLB slices have zero interconnect latency.

that most page table walk memory references are serviced
from the LLC. In our experiments on a baseline without
NOCSTAR 70-87% of the page table walks in the workloads
we evaluate prompt LLC and main memory lookups for the
desired page table entry. Using NOCSTAR eliminates the bulk –
over 85% on average – of the LLC/memory references, thereby
saving lookup energy. These energy savings far outweigh the
the energy overheads of the dedicated NOCSTAR network.

Interconnect. We now tease apart the performance contribu-
tions of distributing TLB slices versus a faster interconnect
with Fig. 15. All bars represent speedups versus private L2
TLBs in a 32-core Haswell configuration. We show two
versions of the banked monolithic approach, one with tradi-
tional multi-hop mesh, and one where we implement SMART
with the monolithic approach. On average, both approaches
suffer performance degradation; that is, even with a better
interconnect (i.e., SMART), the monolithic approach experi-
ences SRAM array latencies that are harmfully high. Instead,
when we distribute the L2 TLB into slices per core (i.e.,
distributed), we achieve an average of 5% performance
improvements. However, NOCSTAR performs even better.

Ideally, messages in NOCSTAR should take only 1 cycle to
traverse the NOC. However, this number may increase because
of contention for the path taken by the message. We find that
on average, latencies are 1-3 cycles, with only two workloads
– xsbench and gups – suffering latencies that can go
beyond 3 cycles. Overall, this means that NOCSTAR achieves
performance close to an idealized case, where the interconnect
faces zero contention (represented by NOCSTAR (ideal) in
Fig. 15. Finally, Fig. 15 also shows the achievable performance
with an ideal scenario where the interconnect has zero
latency. We see that NOCSTAR achieves within 95% of the
performance of this idealized case.

To test the interconnect mechanism adopted in NOCSTAR,
we injected random synthetic traffic to a 64 core system.
Fig. 11(c) shows the average network latency faced by mes-
sages. Ideally messages in NOCSTAR would experience 1 cycle
in path setup and another cycle to traverse the network. We
see that even with an injection rate of 0.1 (1 message every

0.8	

1	

1.2	

1.4	

pe
r-
4-
co
re
	

pe
r-
8-
co
re
	

pe
r-
16
-c
or
e	

pe
r-
4-
co
re
	

pe
r-
8-
co
re
	

pe
r-
32
-c
or
e	

pe
r-
4-
co
re
	

pe
r-
8-
co
re
	

pe
r-
64
-c
or
e	

16	core	 32	core	 64	cores	

Sp
ee
du

p	

canneal	 graph500	
gups		 xsbench	

0.8	

1	

1.2	

1.4	

1x
	tw

o-
w
ay
	

2x
	o
ne

-w
ay
	

1x
	tw

o-
w
ay
	

2x
	o
ne

-w
ay
	

1x
	tw

o-
w
ay
	

2x
	o
ne

-w
ay
	

16-core	 32-core	 64-core	

Sp
ee
du

p	

average	 canneal	 graph500	
gups		 xsbench	

Fig. 16: (Left) Speedups with varying core counts versus private
L2 TLBs for round-trip acquire (1×two-way) and one-way acquire
(2×one-way); and (right) speedups of TLB invalidation policies.

10 cycles per core, which is high for TLB traffic), the average
latency of messages in the NOCSTAR interconnect remains
within 3 cycles. Further, Fig. 11(c) also shows the percentage
of messages which experience no delay in acquiring a path.

Path setup options. We study two modes of link reservation:
(a) Round trip acquire: links are acquired for the total period
of accessing a remote slice. In this mode, link selection has to
be performed only once for sending a request and response. (b)
One-way acquire: Links are acquired only for sending a one-
way message. Each message in the system selects links before
traversal. The graph on the left in Fig. 16 shows that acquiring
links separately for each message delivers better performance
than acquiring links for round trips.

TLB invalidation. We investigated the effect of sending an
invalidate request to a TLB slice because of a shootdown or
flush from any core. We considered various ways in which an
invalidate message can be sent across a the TLB interconnect.
The straightforward way is to send an invalidate from each
core to the TLB slice. This policy is simple but may lead
to congestion in the interconnect if all the cores are trying
to invalidate from the same slice. The other way is to send
the invalidate message to a central location which can then
manage invalidations to all the slices. This can be further split
up by having a manager for a set of n slices. The graph on the
right in Fig. 16 shows the speedup of workloads with different
ways of sending an invalidate message compared to each core
sending its own invalidate message.

Page table walk policies. We considered two policies for
performing page table walks:
Page table walk at the remote core: The core which has the
L2 slice for the virtual address performs the page walk and
then sends the new translation as a response to the requesting
core after inserting it in the L2 slice.
Page table walk at the request core: On an L2 TLB slice miss,
a miss message is sent to the requesting core. The requesting
core then performs the page table walk and sends an insert
message to the remote slice.

Fig. 17 shows speedups using policies. While performing
the page table at the remote node involves sending fewer
messages on the interconnect, it pollutes the local cache of the
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Fig. 17: Page walks at requesting and remote core.

TABLE III: Speedups for a 32-core Haswell system. We study the
impact of prefetching, hyperthreading, and page table walk latencies
on the speedups achieved by NOCSTAR and other shared L2 TLB
configurations versus private L2 TLBs. Speedup averages across
workloads, as well as minima/maxima are shown.
.

Pref. SMT PTW Lat. Min Avg Max
Monolithic 0.89 0.92 0.99

No 1 Variable Distributed 1.02 1.07 1.09
NOCSTAR 1.11 1.16 1.26
Monolithic 0.85 0.94 1.01

1 1 Variable Distributed 0.99 1.1 1.12
NOCSTAR 1.08 1.2 1.29
Monolithic 0.89 0.96 1.01

1, 2 1 Variable Distributed 1.01 1.13 1.15
NOCSTAR 1.1 1.25 1.32
Monolithic 0.87 0.89 0.99

1-3 1 Variable Distributed 0.99 1.08 1.11
NOCSTAR 1.12 1.18 1.28
Monolithic 0.92 0.94 1.01

No 2 Variable Distributed 1.04 1.1 1.12
NOCSTAR 1.14 1.21 1.31
Monolithic 0.93 0.95 1.03

No 4 Variable Distributed 1.01 1.13 1.15
NOCSTAR 1.16 1.27 1.33
Monolithic 0.84 0.88 0.93

No 1 Fixed-10 Distributed 0.94 0.95 0.99
NOCSTAR 1.01 1.04 1.08
Monolithic 0.89 0.92 0.99

No 1 Fixed-20 Distributed 1.02 1.07 1.09
NOCSTAR 1.08 1.14 1.24
Monolithic 0.93 0.97 1.03

No 1 Fixed-40 Distributed 1.05 1.09 1.13
NOCSTAR 1.11 1.18 1.27
Monolithic 1.05 1.08 1.12

No 1 Fixed-80 Distributed 1.08 1.13 1.17
NOCSTAR 1.18 1.26 1.33

remote core (degrading performance). We see that performing
the page table walk at requesting core delivers slightly better
results compared to page table walk at remote core.

Sensitivity studies. We have quantified the NOCSTAR with
other configurations (see Table III). The first row quantifies
the average and min/max speedups for our workloads for a 32-
core Haswell. We compare this to scenarios with prefetching
(Pref. column label), with hyperthreading (SMT column), and
with varying page table walk latency (PTW Lat. column).

We first compare these numbers to a scenario where TLB

prefetching is enabled. The original shared TLB paper studied
the impact of prefetching translations ±1, 2, and 3 virtual
pages adjacent to virtual pages prompting a TLB miss [34].
We run these experiments with our monolithic, distributed, and
NOCSTAR configurations in rows 2-4. We find that NOCSTAR’s
benefits are consistently enjoyed even in the presence of
prefetching. Like the original shared TLB paper, we find that
prefetching translations for up to ±2 virtual pages away is
most effective, with more aggressive prefetching polluting the
TLB. However, in every one of these scenarios, the shared L2
TLB’s bigger size implies that there is less pollution versus
private L2 TLBs. Additionally, NOCSTAR’s reduced access la-
tency versus the monolithic and distributed approaches means
that accurate prefetching can yield better performance.

Table III quantifies the impact of running multiple hyper-
threads. The more the number of hyperthreads run per core,
the higher the TLB pressure. As expected, this means that
shared L2 TLBs offer hit rate benefits over private L2 TLBs;
when combined with NOCSTAR’s superior access latency, the
performance exceeds distributed and monolithic results.

Finally, Table III quantifies NOCSTAR’s performance as a
function of the page table walk latency. We classify page
table walk latency as variable (corresponding to a realistic
simulation environment where the page table walk latency
depends upon where in the cache the desired translations
reside) or fixed-N (where we fix the page table walk la-
tency to N cycles). As expected, when the page table walk
latency is unrealistically low (i.e., 10 cycles), the monolithic
and distributed TLBs severely harm performance. This is
because these configurations suffer higher access latencies,
while their higher hit rates are not useful because the impact
of a TLB miss is minor. Nevertheless, even in this situation,
NOCSTAR outperforms private L2 TLBs. In more realistic
scenarios where the page table walk latency is 20-40 cycles
(which is what we typically find them to be on real systems
[4, 24, 28, 34]), NOCSTAR’s performance notably exceeds
other options. And in scenarios where page table walks are
very high (i.e., 80 cycles), these benefits become pronounced,
with NOCSTAR outperforming distributed L2 TLBs by 13%
on average.

Multiprogrammed combinations of sequential workloads.
Our target platform is the 32-core Haswell system. Our work-
loads consist of combinations of four workloads, leading to
330 combinations overall. Each workload executes 8 threads
to utilize all 32 cores. Fig. 18 sorts our results by overall IPC
improvement. NOCSTAR is particularly effective for multipro-
gramming because it offers the utilization benefits of shared
TLBs without penalizing applications with high access latency.
So, it always improves aggregate IPC compared to the other
approaches; in contrast, monolithic degrades performance
for about half the workloads because of access latency issues
while distributed degrades 10% of the workloads.

The bottom graph in Fig. 18 shows the speedup of the
worst-performing application. As shown, monolithic and
distributed see many cases (almost half the combina-
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Fig. 18: (Left) Overall throughput on 32 cores with 330 combina-
tions of 4 workloads; and (Right) Speedup of the worst-performing
sequential application over private L2 TLBs.

tions) where at least one application suffers performance loss
due to high access latency. Sometimes, degradation is severe;
e.g., 40%. In contrast, only in 7% of the workloads does
NOCSTAR degrade performance. Not only is this relatively
rare, the extent of the performance loss is relatively benign,
with worst cases of 2-3% versus private L2 TLBs. This
problem is reminiscent of interference issues in LLCs and
can likely be alleviated with LLC QoS/fairness mechanisms
[59, 60]. We leave these for future work.

Pathological workloads. Our studies thus far suggest that
most real-world workloads do not tend to generate significant
congestion. For this reason, to stress-test NOCSTAR, we have
devised two classes of microbenchmarks.
1 TLB storm microbenchmark: The first microbenchmark

triggers frequent context switches and page remappings. This
forces ”storms” of L2 TLB invalidations/accesses that congest
the network. We take the workloads that we have profiled so
far and we concurrently execute a custom-microbenchmark.
We modify the Linux scheduler to context switch between our
workloads and the microbenchmark; normally, Linux permits
context switching at 10ms granularity, but we study unreal-
istically aggressive context switches from 0.5ms onwards for
the purposes of stressing NOCSTAR. The custom microbench-
mark is then designed to allocate 4KB pages, promote them
to 2MB superpages, and then break then into 4KB pages
again. The confluence of our modified Linux scheduler and
our microbenchmark is a massive number of TLB misses
and invalidations. Every context switch on our x86 Haswell
systems forces all shared TLB contents to be flushed, followed
by a storm of L2 TLB lookups for data. Furthermore, every
time our microbenchmark promotes 4KB pages to a 2MB
superpage, it invalidates 512 distinct L2 TLB entries.

Fig. 19 quantifies the slowdown of our workload with this
TLB activity. Results are averaged across all workloads and
we vary core counts. We focus on the case which generates the
maximum network congestion by context switching at 0.5ms;
our microbenchmark generates as many as 200-300 L2 TLB
accesses per kilo-instruction, which is more than the TLB
stressmarks in prior work [5, 28].

Fig. 19 shows that even the TLB pressure imposed by our
microbenchmark naturally degrades performance versus the
scenario where the benchmark is standalone (i.e., alone). As
we can see, the w/ub results representing the microbenchmark
suffer from as much as 10-20% performance degradation.
However, in ever single case, NOCSTAR vastly outperforms
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Fig. 19: Average speedups for workloads versus private L2 TLB con-
figuration, for varying core counts. Bars for alone represent results
from when the workloads run alone (i.e., matching already-presented
data). Bars for w/ub represent data for when the workloads were
concurrently run with the TLB storm microbenchmark.

the other approaches. For example, the monolithic banked
L2 TLBs degrade performance by as much as 20-30% versus
private L2 TLBs in the presence of this level of contention.
On the other hand, NOCSTAR continues to achieve 7-11%
performance improvements on average. While this is certainly
lower than the 18%+ performance improvements achievable
without congestion, these results are promising. Furthermore,
the improvements achieved by NOCSTAR improve when we
change our context switching granularity from an unreason-
ably aggressive 0.5ms to 1-10ms.
2 TLB slice microbenchmark: We have also crafted a second

microbenchmark to test what happens when there is immense
congestion on one TLB slice. In this microbenchmark, we
run N-1 threads on our N-core machine. All these threads are
designed to continuously access the L2 TLB slice assigned to
the Nth core. Naturally, this approach degrades performance
most severely. However, we find that in every single case,
NOCSTAR continues to do better (by 3-5%) over private L2
TLBs. Furthermore, NOCSTAR is, in the most conservative
scenario, 7% better than any other shared L2 TLB approach
(i.e., either the monolithic banked, or distributed approaches).
Consequently, NOCSTAR continues to be a better alternative
than any other shared L2 TLB configuration.

VI. CONCLUSIONS

This study proposes NOCSTAR, a TLB-NOC co-design that
achieves the high hit rates of shared TLBs without compro-
mising access time. We show that the higher hit rate delivered
by shared TLBs is overshadowed by the high latency posed
by the TLB structure and the network involved in traversing
to it. Moreover, a traditional distributed architecture does not
deliver the potential performance gains because of network
latency. By co-designing distributed TLBs with a SMART
interconnect, NOCSTAR improves multi-threaded and multi-
programmed workload performance.
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