
Merge Network for a Non-von Neumann Accumulate Accelerator in a 3D Chip

Anirudh Jain and Sriseshan Srikanth
Georgia Institute of Technology

Atlanta, Georgia
Email: {anirudh.j, seshan}@gatech.edu

Erik P. DeBenedictis
Center for Computing Research
Sandia National Laboratories

Albuquerque, New Mexico
Email: epdeben@sandia.gov

Tushar Krishna
Georgia Institute of Technology

Atlanta, Georgia
Email: tushar@ece.gatech.edu

Abstract—Logic-memory integration helps mitigate the von
Neumann bottleneck, and this has enabled a new class of archi-
tectures that helps accelerate graph analytics and operations
on sparse data streams. These utilize merge networks as a
key unit of computation. Such networks are highly parallel
and their performance increases with tighter coupling between
logic and memory when a bitonic algorithm is used. This
paper presents energy-efficient on-chip network architectures
for merging key-value pairs using both word-parallel and bit-
serial paradigms. The proposed architectures are capable of
merging two rows of high bandwidth memory (HBM) worth
of data in a manner that is completely overlapped with the
reading from and writing back to such a row. Furthermore,
their energy consumption is about an order of magnitude lower
when compared to a naive crossbar based design.

1. Introduction

Moore’s law projected that two-dimensional chips would
hold exponentially more transistors over time, but computer
performance is obviously flatlining [1]. Multiple hardware
threads like those in multi-core, many-core, and general
purpose graphics processing units (GPGPUs) can make use
of additional transistors for many “general purpose” ap-
plications. However, adding parallelism into the traditional
von Neumann architecture does not help applications that
have a fundamentally low memory access locality, and only
perform small amounts of computation per memory access.
In hopes of resuming the trend of rising computer perfor-
mance for such applications, research has begun on non-von
Neumann accelerators that use logic and memory integrated
in 2.5D and 3D modules – thus allowing the number of
devices to increase without physically unrealistic reductions
in transistor dimensions.

High Bandwidth Memory is an example of this integra-
tion, where 4-8 slightly modified DRAM chips are stacked
using through-silicon vias (TSVs) on a logic-containing base
layer (or, logic is possibly bonded via a silicon interposer for
2.5D), providing a larger number of shorter wires between
memory and logic. This dense packaging is possible only
because the stacked memory chips have low power indi-

vidually, but overall modules dissipate over 100W at peak
levels [2].

Integration of logic and memory on one chip is a key
advance that mitigates the von Neumann bottleneck resulting
from an off-chip bus between main memory and the cache
hierarchy at the processing core [3], [4], [5]. The reduction
in data movement through the memory hierarchy and the
processing units results in both performance gain and energy
savings. The reduction has widened the scope for research
into various on-chip algorithms such as sorting and merging
that were previously thought to be infeasible at reasonable
scales.

In this work we present and evaluate several near-
memory on-chip merge network architectures for key-value
records stored in current High Bandwidth Memory (HBM)
or successors according to the expected scaling path, in-
cluding collision detection and compression (reduction) that
is key to the associative array programming paradigm [6].
Our work focuses on merge networks that make use of the
highly parallel bitonic sort algorithm [7].

The merge network has the desirable property that its
performance will scale up with tighter coupling between the
logic and the memory, which is equivalent to a hypothetical
sequence of HBM chips where the current 128-bit data path
gets wider. Tightening of coupling in 3D is the new scale-up
path in current roadmaps [1].

First, this paper presents the design tradeoffs in a variety
of word-parallel network-on-chip architectures for the merge
network. When compared to a naive full-crossbar design, our
approach achieves a latency reduction of 28× and energy
reduction of 4× for merging (and compressing/reducing) a
given set of records.

Second, by bit-transposing the in-memory representation
of records, this paper presents a serial design that is able
to leverage a bitonic bit-level sorting network that can be
tightly integrated with HBM row reads at a burst (128-bit)
granularity. We find that this approach offers a reduction
of 2.5× in energy consumption when compared with the
word-parallel architecture.

The remainder of this paper is organized as follows:
Section 2 presents a brief overview of a bitonic network and
the Superstrider accelerator that utilizes the merge network
as a fundamental unit of operation, although the network



architectures presented in this paper can be extended to
independent sorting accelerators. Section 3 describes the
fundamental design tradeoffs in marshalling data to and
from a single unit of computation, Section 4 scales this
to leverage several units of computation available and par-
allelism. Section 5 then describes our second approach
of using a bit-level sorting network. Experimental results,
related work and a conclusion are presented thereafter.

2. Background

2.1. Superstrider

Superstrider fundamentally reduces records stored in
memory [4], [5]. A record is a key-value pair, with two
registers of K records called Mem (memory) and Acc
(accumulator) illustrated below in the terminology of the
associative array computing paradigm [6].

TABLE 1. TWO GROUPS OF RECORDS, K=4

Mem Acc
[1]=2 [2]=2 [3]=1 [4]=2 [5]=3 [3]=2 [2]=1 [1]=1

Records can be any size needed by the application, but
HBM rows are 16,384 bits long, transferred as registers of
128 128-bit records, so we will use 128-bit records as exam-
ples in this work, without loss of generality. The example
records will be comprised of 64-bit key and value fields,
both unsigned integers. Roadmaps project that bandwidth
of 3D memory will increase over time, such as changing
the HBM transfer to 64 256-bit words, 32 512-bit words,
and so on [1].

The Superstrider architecture needs only one data op-
eration for the accumulation function covered in this work
although the second part of the operation has minor variants.
As shown below, one register of K=4 records called Mem is
concatenated with an equivalent amount of data in a register
called the accumulator or Acc. Our standard definition of
a register prohibits duplicate keys, but concatenating two
registers into a double length ”register” can yield duplicate
keys initially – but not triplicates or higher. The first part
of Superstrider’s data operation concatenates the Mem and
Acc registers, puts the records into sorted order, and merges
records with the same key (which will be adjacent at that
point). Merging involves deleting one record and replacing
value field in the other record with the sum of the value
fields, as shown below.

The higher-level algorithm also supplies a key called
Pivot to the first part of the operation. The keys of all records
surviving the merge, called real records, are compared with
the pivot to produce two integer counts, called LT and GE,
that reveal the number of records with keys less than and
greater-than-or-equal to the pivot.

The Superstrider data operation puts the resulting 2K
records back into Mem and Acc, but there are variants
based on which records are moved to Mem versus Acc.
One variant moves the Rot records with the smallest keys to

TABLE 2. BASIC SUPERSTRIDER OPERATION, K=4

Mem Acc
[1]=2 [2]=2 [3]=1 [4]=2 [5]=3 [4]=2 [2]=1 [1]=1
Merged
[1]=2 [1]=1 [2]=2 [2]=1 [3]=1 [4]=2 [4]=2 [5]=3
Duplicate keys detected and merged
[1]=3 del [2]=3 del [3]=1 [4]=4 del [5]=3
Result
[1]=3 [2]=3 [3]=1 [4]=4 [5]=3 del del del
An alternate result
[0]=0 [0]=0 [1]=3 [2]=3 [3]=1 [4]=4 [5]=3 [F]=0

Figure 1. System Overview

Acc, another to Mem. Actually, the higher level algorithms
uses LT and GE to compute Rot on the fly, yielding various
different options.

Registers can hold less than K real records, with the
remaining records called deleted or filler records depending
on context. The most complete implementation of Super-
strider uses the minimum and maximum values of the key
field to indicate the record is filler, which, for the unsigned
integer keys in this document, will be all zeros and all ones
(0 and hexadecimal F in the illustrations). The higher level
algorithm is not permitted to use these values of the key field
for real records, but the underlying implementation sorts by
key field irrespective of whether a record is real or filler. The
sorting means a register in storage will always be ordered
as all-zero filler, real records, and all-one filler.

Accumulation requires low-performance access to spe-
cific records for input, output and identifying an appropriate
pivot. These, and specifics of the control logic implementing
the above operations, are not covered in this paper.

Figure 1 presents a high level overview of a merge
network. It is assumed that the front end, a traditional
microprocessor, populates the Acc mentioned above with
records that have to be merged.

2.2. Bitonic Merge

Bitonic merge is a fundamental building block of bitonic
sorting networks [7]. A bitonic sequence is of the form
x0 ≤ x1... ≤ xk ≥ xk+1... ≥ xn−1 or a rotation of such a
sequence. In bitonic merge, comparisons are made across a
stride, which starts out as half of the sum of lengths of the

2



sequences that are being merged. The smaller value element
is swapped to the left side of the buffer. After n comparisons,
where n is the length of one of the sequences, are made,
the stride is halved and the compare and swap operation
continues on both halves of the combined sequence. The
steps described here continue until stride becomes one and
pairs of neighbors are being compared. If the initial stride
started out at a value of one and doubled until it reached
n and then the steps described above were performed, the
result would be a sorted sequence – hence the name bitonic
sort. However, since Superstrider rows maintain the sorted
invariant and the input data is a pre-sorted sequence, this
paper deals with the merge algorithm starting with a stride
of n. Without loss of generality, it is assumed that both input
sequences are of identical length.

The total run time of bitonic sort is O(n log22(n)). How-
ever, notice that each one of the individual comparisons
can be made in parallel, and with n functional units, the
complexity of the algorithm becomes O(log22(n)). If we are
concerned only with the merging of two pre-sorted bitonic
sequences, the complexity is O(log2(n)).

Finally, while the keys of a pair of records are being
compared, the associated values can either be swapped or
an associative collision/reduction function can be applied to
them. Typical collision functions are trivial, such as addition,
minimum etc., and can therefore be handled by the same
computation unit that compares the keys.

3. Fundamental Network-on-Chip Tradeoffs

3.1. Baseline Design : Crossbar Based

Recall that the Mem buffer contains K(= 128) sorted
records from a SuperStrider HBM row and the Acc buffer
contains K sorted records that are being inserted into the
SuperStrider instance. However, since we wish to design our
architecture such that it can be extended to sorting data that
is completely unsorted to begin with, it should be possible
to feed any record from either buffer to the processing unit.

The baseline single-comparator merge network (Fig-
ure 2) therefore consists of two SRAM buffers (Mem and
Acc) of size K each, a comparator-collision function unit
and a full crossbar that connects them. Recall that the
bitonic merge operation involves comparing records across
a level-dependent stride and applying the collision function
on the values if the keys match. Based on the result of the
comparison, either the values are reduced, and one of the
records becomes the “real” record, while the other is marked
for deletion, or the two records are swapped. The control
unit decides which elements are compared and which buffer
to write-back each record to.

Using the algorithm and architecture described above,
for each buffer with K records, there are log2 2K levels of
bitonic merge, each one of them involving at most K reads
from each buffer and at most K writes to each buffer. Since
each buffer has two separate read and write ports, the reads
and writes to the SRAM buffers can be performed in parallel
for any stride of the bitonic merge operation.

Figure 2. Crossbar Based Merge Network

This design does not require any additional buffers for
storing intermittent results. However, the area, power and
delay of a full crossbar scale quadratically with the num-
ber of entities it connects. This section now presents two
alternative interconnects to a full crossbar to significantly
improve its power-performance profile.

3.2. Rotating Buffer Design

Since a level of bitonic merge does not require access
to all elements in the buffers at the same time, and, given
that it has a structured dataflow path, a rotating buffer based
design can be used, as shown in Figure 3. Mem and Acc are
implemented as rotating/ring buffers with a single read port
and a single write port, each. Two first-in-first-out (FIFO)
buffers are added to stage swapped/compressed records back
into Mem and Acc, to reduce the amount of rotation needed
and to enable the reading of records separated by stride s
in an efficient manner.

Initially, when s = K, the first records of both buffers
are compared, and the buffers are rotated such that the
second record is at the head, ready to be read subsequently,
and so on. After the records are swapped/compressed by
the comparator/adder, they are sent to the appropriate output
FIFO buffer, as decided by the control unit.

After K such comparisons, s = K
2 . s records from the

first FIFO buffer are moved to Mem and the remaining are
moved to Acc. This is then repeated for the second FIFO
buffer. The result is that the records in the first locations of
Mem and Acc are s records apart. Thereafter, the process
of reading records out to the comparator/adder as described
above can be repeated until s = 1.

One consequence of this interleaved movement of data
for the various levels of bitonic merge is that it leaves the
records shuffled once the s = 1 level is complete. In order
to recover the final compressed and sorted record buffers, a
number of reorder steps are required. s = 1 records have to

3



Figure 3. Rotating Buffer Design

be read in an alternating manner from both the buffers to first
fill one of the rotating buffers, and then to fill the other one.
s is then doubled and the process is repeated until s = K

2 .
This results in an additional latency and energy required that
can be characterized by Klog2

K
2 read and writes from the

input buffers to the FIFO buffers.
Although this design is less power-hungry than the

crossbar-based design, it is slower because of the added
complexity described above. As a result, the energy savings
when compared to the baseline are minimal. Furthermore,
when the initial sequences are not pre-sorted, the overhead
of “rotation” becomes prohibitively expensive, thereby lim-
iting the applicability of this design.

3.3. Indexing Buffer Design

To mitigate the inefficiencies above, an indexable
SRAM-based design is proposed. Mem and Acc are im-
plemented as dual-ported 2D SRAM structures where each
SRAM block/line contains C records (Figure 4). At a high
level, these structures can be viewed as direct mapped
caches, without the overhead of tags, or, equivalently, as
two-level crossbars if the cache decoder is viewed as a
crossbar.

For each level of bitonic merge (stride s), a cache line is
read into the first buffer, and the cache line corresponding
to records that are s records away is read into the second
cache line buffer. These pair of cache lines may be read
from the same cache or from Mem and Acc respectively.
For example, when s = K, the first cache line from both
Mem and Acc are read, followed by the second lines from
both and so on. When s = K

2 , the first cache line and the
K
2C

th
cache line from Mem are read into the cache line

Figure 4. Indexing Buffer Design

buffers. Note that two read ports per cache allows for the
latter pair of cache lines to be read in parallel.

For each such pair of cache lines read, the records from
each cache line buffer are then swapped/compressed using
the comparator/adder, and the output cache line buffers are
written back to Mem and Acc. Once all the cache lines have
been processed, the stride is halved and the process repeats.

The indexable SRAM based design approach results in
K
C cache line reads and writes from both the Mem and
Acc caches. The reads and writes can be performed in
parallel during the “steady state” of operations. The total
levels of the bitonic merge remain log2 2K as discussed in
the previous sections, and at most K comparisons are made
during each level.

This design benefits from the use of cache line buffers
that allow cheap (in terms of energy and latency) access
to concurrent records once the cache line has been read
in. Moreover, the hierarchical distribution into indexable
SRAMs and smaller line size buffers retains the record ac-
cess flexibility of the large crossbar design, thereby allowing
the design to be extended to sorting and not just merging.

4. Scaling Word-Parallel Networks

4.1. Multiple Comparators

Recall that the primary motivation for choosing bitonic
merge as the algorithm of choice as opposed to other merge
techniques such as parallel merge-sort, quick sort, etc. was to
leverage the structured nature of bitonic merge by extracting
parallelism. Instead of utilizing a single comparator in a
temporally repeated manner, the comparator can be spatially
repeated. From the analysis presented in Section 3, it is clear

4



Figure 5. Multiple Comparator Design

that for a single comparator, the indexable SRAM based de-
sign presents the best trade-off between energy, performance
and complexity. Therefore, for a multi-comparator design,
this paper limits the analysis to the indexing buffer design.

Figure 5 shows the overall architecture of the indexable
SRAM based design with multiple comparator/adder units.
Similar to the architecture described in Section 3.3, this
design has two dual ported indexable SRAMs (Mem and
Acc), each connected to a network of comparators via C-
sized buffers. To maximize performance and to minimize
control logic complexity, it is easy to see that the number
of comparators is C; a lower number of comparators would
result in increased delay and a higher number would result
in wastage.

The records from the pair of caches line read (similar to
Section 3.3) are sent to the appropriate comparator serially.
After records have been moved to the comparators, the
C comparisons are made in parallel and records are sent
to the corresponding output buffer after either a swap, a
compression or a deletion to be written back to the Mem
and Acc. As this write back is not on the critical path for
a steady state of operations, it can be performed in parallel
with the processing of the subsequent pair of cache lines.
Moreover, the subsequent pair of cache lines can also be
read in parallel with the swap/compression because the the
delay incurred by the processing units is typically more than
the latency of reading and writing from the Mem and Acc.
In general, using multiple comparators allows the latency to
be reduced by a factor of C.

When s ≥ C, comparisons are made across cache lines
resulting in K

C reads per stride for a total of K
C log2(

K
C )

cache line reads. For the remaining log2 C strides for which
s < C, comparisons are made within a cache line, and every
cache line in both Mem and Acc is read for every single
stride. This results in a total of K

C log2 C cache line reads,

Figure 6. Compare and Compress Unit Array for C = 8

thus motivating the need to optimize pipelining for both
these phases of the bitonic merge to improve utilization of
read cache lines and reduce the energy and latency overhead
the repeated cache accesses result in.

4.2. Pipeline Schedule

Arranging the comparators/adders as a C × C systolic
array results in an elegant pipeline schedule [8].

For stride s ≥ C, the (pipelined) cache line reads are
statically routed to the systolic array, which is populated
in a bottom-up manner, with the levels above the des-
tination level acting as intermediate repeaters. That way,
once the systolic array has been populated, all the compar-
isons/additions occur in parallel, and the resultant records
can be streamed out in a lock-step fashion. Subsequent
stream-ins to the systolic array from the caches can then
occur in parallel with the stream-outs of the previously
processed outputs in typical pipelined fashion.

For stride s < C (there are log2 C such strides), recall
that the records of interest are within the same cache line.
Therefore, the systolic array must make most use (process
all possible strides) of data read from a cache line of
Mem/Acc before it is written back into Mem/Acc. The
results from one level in the systolic array to the one below
it are passed in a staggered manner where the offset is equal
to s

2 with s = C
2 for the first level, which is subsequently

halved for every level.
Figure 6 shows the structure of such a pipeline for

C = 8. The squares represent the compare and compress
functional units, the dotted lines indicate links that are used
in the first phase of the dataflow (s ≥ C) and the solid lines
indicate links that are used for the staggered connections for
the second phase (s < C).

4.3. Pipeline Interconnect

Because of the dissimilarity in dataflows for the two
phases as described above, an irregular network topology
may seem like the obvious choice. However, to make it
possible for this merge network to be compatible for various
record sizes (applications) and across a variety of memory
devices, it must be flexible for different C and K. Consider-
ing this requirement, a C × log2 C mesh topology has been
chosen. Moreover, to mitigate the latency of multi-hop links,
the interconnect network can utilize SMART routers [9] and
leverage its single cycle long hop capability.

Finally, since the network traffic pattern is stride depen-
dent, it can be determined statically and pre-programmed

5



into the control unit. Routers in the array (SMART or
otherwise) can therefore utilize a bufferless design with no
flow control overhead.

4.4. Write Buffers

Local write buffer. Recall that write out to the caches
after processing is pipelined and can be overlapped with
the read-in of subsequent cache lines. In order to minimize
latency and reduce the number of read/write ports required
in the SRAM caches, the processed records can be written
into a local write buffer that can hold at least 2 log2 C
cache lines. Now, while the subsequent cache lines are being
processed by the systolic array, the cache lines from the
write buffer are written back to the SRAM caches.

Global write buffer. Along similar lines, but at a larger
granularity, a write buffer of size K can overlap the write-
back of the previously processed Mem/Acc contents into its
HBM row with the processing of a newly read HBM row.

4.5. Interleaving HBM accesses

Data transfer from and to memory can be interleaved
with the operations of the merge network. Specifically, only
C records are required to feed one row of the systolic
array. Once the first cache line is completely filled, the first
comparisons are launched through the network. This can be
done in parallel with the read of the next C records. This
interleaved pattern is continued until all the records are read
from memory. Therefore, the first stride of bitonic merge
can be completely overlapped with an HBM row read. (The
remaining strides require all the records in order to proceed.)

Once the first cache line of the Mem buffer has gone
through the s = 1 level, it is streamed out to the global
write buffer, while the subsequent cache lines are processed
by the network. It should also be noticed that the next HBM
row read can start in parallel with the other operations. This
effectively takes the comparator network with the pipelined
design off the critical path with respect to the memory read
and write operations. Since the operations of the comparator
network have very low latency as compared to the read and
write latencies from HBM, row remap logic can be used
to write from the global write buffer to the already open
DRAM row in order to avoid the cost of row precharge and
activation.

4.6. Record Compression

Once two records with the same key are compared, one
of the records is marked with a deletion flag. The other
copy of the record, referred to as the “real” record thus far
in this paper, gets the result from the result of the reduction
operation. Since there are no duplicate keys in Mem or Acc
individually, there will be at most one pair of records with
the same key for every key, and it is guaranteed that the
real copy will contain the collision function output of the
values. The bitmask of deleted records is stored at a cache
line granularity. It is crucial that the record that is marked

for deletion is not explicitly deleted (in any manner, just yet)
so that the data flow of the remaining bitonic merge steps
does not get affected. Once all the stages of bitonic merge
have executed, all the records which don’t have the delete
flag set are streamed from the cache lines from Mem buffer
to a global write buffer and subsequently from the Acc.

5. Sorting Network Approach

5.1. Key Observations

1) The cache-based word-parallel architecture can be fur-
ther improved by tweaking the representation of the
records in memory. Suppose an HBM row with K
records is organized such that K keys are first laid in
a contiguous manner, followed by the K values. In the
first phase, reading out the keys from the Mem cache
would result in fewer cache lines being accessed, thereby
improving energy efficiency. In the second phase, since
the keys have already been compared and swapped in
the first phase, the final positions of the records are
known, and the value fields can therefore be accessed
and swapped/reduced as needed.

2) A bit-level sorting network works by comparing the
MSBs of both inputs first. If they do not match, then one
input is clearly greater than the other, and the subsequent
bits of the input do not require processing. If a swap is
performed for the MSBs, then the swap is performed
for the subsequent bits as well. If the MSBs do not
match, then the process just outlined has to be repeated
by treating the next bit as the new MSB instead, and so
on. If it turns out that all the bits of the inputs match, then
it means that the inputs are identical. In this paper, this
is the scenario where keys are equal, thereby warranting
reduction on values in the second phase.

3) When the collision function is addition, a single full
adder can serve as a bit-comparator in the first phase for
the keys, and as a reducer for the second phase involving
values. However, although the data flow is from MSB to
LSB for a comparison (as described above), for addition,
the data flow is from LSB to MSB because of carry.

4) In this paper, recall that the record size is 128-bits (64-
bit key, 64-bit value), such that K = 128. Furthermore,
commodity HBM has 128-bit wide channels, and the
time taken to read such a quantum of data is in the order
of a few nanoseconds, which is higher than several full-
adder operations’ worth of delay.

5.2. High level algorithm

A highly energy-efficient, bit-serial design based on the
above insights can be formed, and is described in this
section.

However, this requires tweaking the representation of
records in memory a little further. Since the bit-level sorting
network expects the MSBs first, the first K bits of an HBM
row would be the MSB bits of each of the keys of the
K records. As each key is 64-bit, the K keys are strided

6



TABLE 3. BIT SERIAL NETWORK OPERATION EXAMPLE, K=4

Mem Acc
[1]=2 [2]=2 [3]=1 [4]=2 [5]=3 [4]=2 [2]=1 [1]=1
Sort
[1]=2 [1]=1 [2]=2 [2]=1 [3]=1 [4]=2 [4]=2 [5]=3
Delete flags
0 1 0 1 0 0 1 0
Prefix sum
0 1 1 2 2 2 3 3
Record index – Prefix sum
0* 0 1* 1 2* 3* 3 4*
2K – Prefix sum
8 7* 7 6* 6 6 5* 5

across 64 such “chunks”, from MSB to LSB. Since additions
require data in LSB-first format, the values in that HBM row
are stored in chunks in a manner similar to keys, but from
LSB to MSB instead.

Before the architecture is described, a high level func-
tional example is first presented.

Table 3 summarizes the mathematical behavior of the
sorting network. The first row of the table repeats the
same example from section 2, followed by the sorted and
merged records into a single list. The next row comprises
“delete flags”, which are 1 for records that must be deleted
(locations 1, 3 and 6 in this example) to yield a list without
duplicates.

To squeeze out the records that need to be deleted,
parallel prefix operations transform the delete flags into
addresses in the range 0...2K − 1, with the address on
each record identifying its appropriate position in the output.
Prefix sum is a specific form of parallel prefix where an
input list xi is transformed to an output list yi such that
yi =

∑i
j=0 xj , or, x plus the running sum of all the elements

earlier in the input list. We now subtract the prefix sum from
its position in the list, labeled as “record index–prefix sum”.
For real records, or records with the delete flag in the 0 state,
this subtraction yields the desired position in the output list.
These values have been labeled with an asterisk and form the
list 0* 1* 2* 3* 4*, which is the desired packed sequence.

5.3. Bit serial network

Figure 7 shows serial data formats on the left and the
hardware structure on the right. The hardware comprises a
continuously operating network with features of both bitonic
sorting and parallel prefix networks. Each record comprises
a bit stream, 128 bits for current HBM technology, with 2K
of these records flowing upward through the logic structure
in Figure 7b. While the records start at reference point
(0) and end at reference point (5) in the same format,
Figure 7a shows how the processing inserts additional fields,
rearranges fields, and eventually puts the result back into the
original form.

At reference point (0), Figure 7, the keys are read from
both Mem and Acc. For a single chunk, the K pairs of bits
are compared through a bitonic network of 8 (= log2 2K)
levels, where each row contains 128 full adders. At each

level, an additional K length bit-vector is used to indicate
if swapping is required or not. Once all the keys have
been streamed-in in their entirety, the bit-vector contains
information regarding which keys are duplicate and which
among them are the “real” ones. As a result, when the value
bits are subsequently streamed in LSB first, they can consult
this bit-vector and accordingly, swap, addition or noop can
be performed as they pass through this same bitonic network
of 8 levels.

Note that this bit-vector is now analogous in functional-
ity to the “delete flags” from Table 3, and is denoted as D in
Figure 7. Recall that these flags also eventually flow through
the 8-level network. Therefore, the bit-serial data flow is
augmented with a gap before the value bits are streamed
in (see reference points (1) and (2)). As these flags go on
to contain the address in the final sorted list, these require
log2 2K bits per record. Again, because these flags will later
influence the reordering of records (keys and values), refer-
ence point (3) performs temporal reorganization to ensure
that they appear at the head of the stream.

Parallel prefix on 2K elements can now be performed
with a log2 2K stage network. Over the course of the
calculation, the D flags get transformed into the address
in the final sorted list in reference point (4). The parallel
prefix calculation involves two full adders for each bit but
just one wire – i. e. the same wiring as a bitonic merger but
different logic in the comparison module. A final log2 2K
stage bitonic network yields the desired output.

The reader should now be able to reason about the
pipelined, bit-serial sorting network that functions at a gran-
ularity of 128 bits, with the following additional informa-
tion:

• Prefix sum can be used to compute addresses for
deleted records by counting down from 2K − 1, as
shown in the final line in Table 3. Numbering real
records from 0 upwards and deleted records from
2K−1 downward will obviously use each of the 2K−1
addresses exactly once.

• The transformation required to sort records when num-
bered as described is the reverse of a bitonic sort, i. e.
bitonic on the right and sorted on the left.

• The required network is actually a reversed bitonic
merge. Recall that a bitonic merge has the long wires
on the left; the needed reverse bitonic merge has the
short wires on the left. However, the logic in each
comparison module is the same as a bitonic merge.

6. Experimental Methodology

The architectures proposed in this paper are evaluated on
a cycle accurate simulator that models latency and power
based on published literature, as follows. CACTI is used
for buffers and caches, with 22nm technology transistors
operating at 0.9V [10]. The comparator models are derived
from a recent work that utilizes 22nm [11]. For the in-
terconnect, the energy and latency for dedicated links is
negligible [9]. However, this paper uses a mesh topology
instead, as explained in Section 4.3, for flexibility, and the

7



Figure 7. Bit Sorting network approach

models are derived from [12]. Finally, the HBM model is
based on the JEDEC standard [13].

Since the bit sorting network described in section 5
is the more energy efficient approach according to the
above methodology, we implemented an RTL model for
Superstrider using this merge logic approach on Intel/Altera
Quartus II to evaluate the performance and design com-
plexity, and also to test for functional correctness. The gate
count and area of the merge logic were computed using the
Adaptable Logic Module Approach described in [14]. Fur-
ther reductions from the total utilization to get energy and
latency for just the merge logic can be made by removing
the area taken by the “AHMES” microprocessor that acts
like the test bench driver. Note that we’ve assumed that the
AHMES front end accounts for about 800 ALMs, and that
each ALM is equivalent to 6 NAND gates.

7. Results
7.1. Word-parallel architectures

Single comparator. Figure 8 shows the latency and
energy consumed for each of the three word-parallel sin-
gle comparator designs. As discussed in section 3, when
compared to the crossbar based baseline, the rotating buffer
based design, although consumes lower power, has limited
energy savings because of its increased latency of operation.
The indexing buffer based design overcomes the limitations
of the other designs and significantly improves over them in
terms of both energy and latency. As such, for word-parallel
architectures, the cache based design is chosen.

Figure 8. Single Comparator Latency and Energy

Multiple comparators. Figure 9 shows a comparison
between a K comparator architecture using the large cross-
bar, the C comparator cache based version, and the pipelined
design described in section 4 for merging K = 128 records
with caches that can hold C = 16 records per cache
line where applicable. As expected, the latency and en-
ergy required for reading K records from the buffer with
large crossbars is significantly higher than those for reading
records from the indexable SRAMs. The pipelined design
leverages the parallelism inherent in bitonic merge and is
able to fully utilize cache lines for all the intra cache line

8



Figure 9. Multiple Comparator Performance

strides, thereby significantly reducing overheads incurred in
reading and writing back records to the buffers for various
intermittent levels of bitonic merge. When compared with
the single-comparator baseline, the pipelined cache based
design is 28× faster and uses 4× less energy. When com-
pared with the multiple-comparator baseline, it is 6× faster
and uses 5× less energy.

Sensitivity to K and C. The values of K and C are
affected by the cache line sizes, record sizes and HBM
row sizes, and changing any one of them can impact the
latency and energy utilization of the merge operation. In
order to gain insights into this change, a sensitivity analysis
is presented in Figure 10. As expected, increasing the value
of K with a constant C causes the energy and latency to
grow by a factor of O(n log2 n). On the other hand, holding
K constant and increasing C results in a reduction in latency
and energy due to the added parallelism from using more
compare and compress units. The latter trend is not perfectly
linear since an additional overhead is incurred when reading
from and writing to the bigger cache line. Empirically, our
results indicated that for merging records up to K = 256,
C = 16 provided the best energy-time performance, since
higher values of C, such as C = 32 result in more expensive
(both time and energy) intermediate buffer reads and writes.

Further improvements. The energy consumption for
the multiple comparator pipelined merge network can be
broken down into the caches, the compare and compress
units, and the network links. The caches and buffers used
86% of the overall energy consumed, while the network
interconnects use about 12% of the total energy, and the
compare and compress units only consume 2% of the total
energy. This motivates the need for a smarter organization
of records within the HBM rows so that the size and number
of buffers used can be reduced.

One potential solution is to populate all the keys in
the first half of the HBM row followed by values in the
second half. This can reduce the required buffer sizes by
half since, first, the keys can be streamed in and sorted, and

Figure 10. Sensitivity to record size, input size and cache line size for
word-parallel architectures.

then collisions/swaps can be detected and recorded. This can
be followed by the read of the values for rearrangement and
compression. The tradeoff is the potentially additional work
the front end (processor) may have to do in order to ensure
that the accumulator is arranged in the manner described
here, as well as additional overhead in lookup of a record.
We have not evaluated the performance of this optimization.
However, the sorting network, whose results are presented
next, relies on such rearrangement of data to further reduce
energy consumption.

Another approach is described in [15]; the idea is to
skip ahead and avoid comparing certain pairs when per-
forming the comparisons by using a clever layout of records.
However this complicates the control logic significantly, and
evaluation for this has been left for future work.

7.2. Sorting network approach

The bit-serial sorting network was evaluated for various
configurations of K to demonstrate its scalability. The gate
count results from RTL have been summarized in table 4.
The largest configuration size for which RTL results are
presented, is limited by the capability of the demo FPGA
board that was available to us.

TABLE 4. BASIC SUPERSTRIDER OPERATION.

Network width 2K
23 24 25 26 27

ALM count, including AHMES
884 1185 1900 3784 7644

Table 5 is a summary of the resources required for the
highly optimized bit-serial sorting network, and attempts to
demonstrate the scalability of this merge architecture with
expected increasing memory row sizes [1].

7.3. Comparison of word-parallel vs bit-serial ap-
proaches

The model described in section 6 was applied to the
sorting network approach as well, and the total energy for

9



TABLE 5. SORTING NETWORK RESOURCES

Attribute HBM General
Key size Lkey = 64 Lkey
Value size Lvalue = 64 Lvalue
Record size Lrecord = 128 Lrecord = Lkey + Lvalue
Width K = 128 K = 2n

Network stages 24 3 log22K
First bit emerges clock cycle 96 4 log22K + Lkey
Last bit clear 128 cycles after first bit Lrecord cycles after first bit
Gate count 92,160 gates per channel 2K x 3 log22K cells
Energy per row 24.6 nJ per channel

merging K = 128 records was found to be about 24.6nJ. For
a frame of reference, note that this is similar to the energy
consumed in reading an entire HBM row (including row
activation) [13], and is about 2.5× lower than the energy
consumed by the word-parallel architecture. As expected,
the energy efficiency of the sorting network approach stems
from using single bit comparator units and its reduced usage
of SRAM structures.

In terms of latency, both, the word-parallel and sorting
network approaches operate such that they are completely
interleaved/overlapped with HBM reads and writes, as dis-
cussed in Sections 4 and 5.

Finally, recall that, in order to achieve superior energy
efficiency, the sorting network requires data to be stored and
input in a re-arranged fashion. Furthermore, a value lookup
requires accessing several non-contiguous columns of an
HBM row, which, for commodity devices, would require
a read of redundant columns.

7.4. Comparison with other hardware sorting net-
works

When compared with other state-of-the-art hardware
merge sorter [16], for merging two sets of 128 records, using
C = 16 for our word-parallel pipelined approach, and E = 8
for the Mashimo, et al approach, we find that our approach
presented in this work achieves a speedup of about 5× at
an energy cost of about 1.2×. The primary reason for the
speedup is the highly parallel nature of bitonic merge in
our design. However the use of various intermediate SRAM
buffers slightly increases the energy utilization.

7.5. “Full” logic memory integration

Both the word-parallel and serial implementations can
process an HBM row in well under 100ns with under 0.1uJ
energy consumption. Speed is not a critical issue because
this is slightly faster than the memory can read and write
the data. Dividing these numbers yields about 1W power
dissipation, or about 8W for all 8 independent channels in
an HBM module. The original HBM I/O drivers consume
about 4W, but HBM2 and other variants consume up to
20W [2]. With the exception of the original version of HBM,
Superstrider consumes less energy than the I/O drivers that
could be disabled during operation.

However, there is room for a lot of additional work. A
DRAM chip during refresh reads rows out of the transistor
array and writes them back with no change for about 46 fJ
per bit [17] or 0.75 nJ per 16Kb HBM row. What this means
is that if the energy efficiency of the implementations in this
work could be further reduced by around 50x, they could
be added directly to all the DRAM bitline buffers without
significantly increasing chip dissipation. The semiconductor
roadmap shows reduction in gate energy from around 5 fJ
to 0.81 fJ by 2033, which is a factor of 7 [1]. Further tuning
of physical place and route, and perhaps improved memory
technology could help achieve a degree of logic-memory
integration that is truly scalable.

8. Related Work

Sorting and merging find applications in a wide variety
of problems [7]. They have been extensively studied with
various sequential and parallel solutions being formulated
over the years, and consequently hardware merge networks
have been explored both as standalone accelerators as well
as fundamental components of larger off-chip accelerators
in both academic and industry research papers [4], [18].
Some of the past work has ranged from using systolic
arrays [8] to more recently using FPGAs for accelerating
large scale sorting, such as data center workloads [16], [19],
[20]. However this is the first work to our knowledge that
tackles the problem at a finer (HBM row) granularity with
a closely integrated logic-memory approach maintaining
energy minimization as one of its primary goals. It should
be noted that in order to directly compete with the FPGA
sorting solutions presented above, we will need to extend
our approach to a hierarchical, potentially tree based multi-
merger design. However, that work is beyond the scope of
this paper.

Moreover, the work presented in this paper can be easily
extended to in-network collectives such as the Mellanox [21]
routers and their Scalable Hierarchical Aggregation Protocol
(SHArP) [22] where reduction operations from various MPI
processes are performed within the network layer itself. The
word-parallel architecture presented in this work can be
integrated within the routers to provide an energy efficient
associative-operation reducer.

9. Conclusion

Recent advancements in 2.5D/3D technologies as well as
an increased prevalence of applications that have low mem-
ory access locality with very little computation per memory
access have given rise to a renewed interest in logic-memory
integration. Superstrider is a recently proposed accelerator
that leverages this paradigm to help tackle what is known
as the von Neumann bottleneck. Merge networks are at
the heart of Superstrider as well as of traditional sorting
networks. This paper presents the design and analysis of
scalable and flexible architectures for such networks and
improves upon naive approaches by an order of magnitude
in terms of performance and energy consumption.

10



10. Acknowledgements

Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any
subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of
the U. S. Department of Energy or the United States
Government. Approved for unlimited unclassified release,
Sandia National Laboratories SAND2018-9939 C.

The authors would like to thank Dr. Thomas M Conte,
and the anonymous reviewers of ICRC for providing valu-
able feedback.

References

[1] “International roadmap for devices and systems – 2017 execu-
tive summary,” https://irds.ieee.org/images/files/pdf/2017/2017IRDS
ES.pdf, 2017.

[2] J. Hruska, “Advantages of hbm over gddr5,” https:
//www.extremetech.com/extreme/226240-sk-hynix-highlights-
the-huge-size-advantage-of-hbm-over-gddr5-memory, 2016.

[3] J. Zhao, Q. Zou, and Y. Xie, “Overview of 3-d architecture design
opportunities and techniques,” IEEE Design Test, vol. 34, no. 4, pp.
60–68, Aug 2017.

[4] S. Srikanth, T. M. Conte, E. P. DeBenedictis, and J. Cook, “The
superstrider architecture: Integrating logic and memory towards non-
von neumann computing,” in 2017 IEEE International Conference on
Rebooting Computing (ICRC), Nov 2017, pp. 1–8.

[5] E. P. DeBenedictis, J. Cook, S. Srikanth, and T. M. Conte, “Super-
strider associative array architecture: Approved for unlimited unclas-
sified release: Sand2017-7089 c,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC), Sept 2017, pp. 1–7.

[6] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2011.

[7] K. E. Batcher, “Sorting networks and their applications,” in
Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, ser. AFIPS ’68 (Spring). New York, NY, USA: ACM,
1968, pp. 307–314. [Online]. Available: http://doi.acm.org/10.1145/
1468075.1468121

[8] U. Schwiegelshohn, “A shortperiodic two-dimensional systolic sorting
algorithm,” in Systolic Arrays, 1988., Proceedings of the International
Conference on. IEEE, 1988, pp. 257–264.

[9] C. H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chan-
drakasan, and L. S. Peh, “Smart: A single-cycle reconfigurable noc
for soc applications,” in 2013 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2013, pp. 338–343.

[10] S. J. E. Wilton and N. P. Jouppi, “Cacti: an enhanced cache access
and cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 5, pp. 677–688, May 1996.

[11] J. V. M. R. D. V. Manikandan, V.P.Muralikrishna, “Static carry
skip adder designed using 22-nm strained silicon cmos technology
operating under wide range of temperatures,” in International Journal
of Engineering and Technical Research (IJETR) ISSN: 2321-0869,
vol. 8, no. 2, Feb 2018.

[12] H. Kim, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jiménez, “Re-
ducing network-on-chip energy consumption through spatial locality
speculation,” in Proceedings of the Fifth ACM/IEEE International
Symposium, May 2011, pp. 233–240.

[13] “High bandwidth memory (hbm) dram,” https://www.jedec.org/
standards-documents/results/HBM.

[14] “Altera fpga white paper,” https://www.altera.com/en US/pdfs/
literature/wp/wp-01003.pdf, 2006.

[15] M. F. Ionescu and K. E. Schauser, “Optimizing parallel bitonic sort,”
in Proceedings 11th International Parallel Processing Symposium,
Apr 1997, pp. 303–309.

[16] S. Mashimo, T. V. Chu, and K. Kise, “High-performance hardware
merge sorter,” in 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), April
2017, pp. 1–8.

[17] E. P. DeBenedictis, “3d software: A new research imperative,” Com-
puter, vol. 50, no. 10, pp. 74–77, 2017.

[18] S. Jun, S. Xu, and Arvind, “Terabyte sort on fpga-accelerated flash
storage,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), April
2017, pp. 17–24.

[19] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel hardware
merge sorter,” in 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), May
2016, pp. 95–102.

[20] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on fpgas,”
The VLDB Journal, vol. 21, no. 1, pp. 1–23, Feb. 2012. [Online].
Available: http://dx.doi.org/10.1007/s00778-011-0232-z

[21] “Mellanox in network collective switch,” http://www.mellanox.com/
related-docs/prod silicon/PB SwitchIB2 EDR Switch Silicon.pdf.

[22] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir,
L. Levi, A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, and
E. Zahavi, “Scalable hierarchical aggregation protocol (sharp): A
hardware architecture for efficient data reduction,” in Proceedings
of the First Workshop on Optimization of Communication in HPC,
ser. COM-HPC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp.
1–10. [Online]. Available: https://doi.org/10.1109/COM-HPC.2016.6

11


