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Georgia Institute and loT platforms have led to the emergence of DNN
of Technology

(DNNs) coupled with their pervasiveness across cloud

accelerators employing hundreds of processing elements
(PE). Most DNN accelerators are optimized for regular
mapping of the problems, or dataflows, emanating from
dense matrix multiplications in convolutional layers. However, continuous innovations in DNN
including myriad layer types/shapes, cross-layer fusion, and sparsity have led to irregular
dataflows within accelerators, which introduces severe PE underutilization because of rigid
and tightly coupled connections among PEs and buffers. To address this challenge, this paper
proposes a communication-centric approach called MAERI for designing DNN accelerators.
MAERI’s key novelty is a light-weight configurable interconnect connecting all compute and
memory elements that enable efficient mapping of both regular and irregular dataflows

providing near 100% PE utilization.

INTRODUCTION

The microarchitecture of deep neural network (DNN) inference engines is currently an area of active
research in the computer architecture community. Graphics processing units (GPUs) are extremely
efficient for training due to the mass parallelism they offer, multicore central processing units (CPUs)
continue to provide platforms for algorithmic exploration, and FPGAs provide power-efficient and
configurable platforms for algorithmic exploration and acceleration; but for mass deployment across
various domains (smartphones, cars, etc.), specialized DNN accelerators are necessary to maximize
performance per watt. This observation has led to a flurry of application-specified integrated circuit
(ASIC) proposals for DNN inference accelerators over the recent years. !>+
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DNNs have millions of parameters, which needs to be mapped over limited compute and memory
resources in the DNN accelerator. We define each unique mapping as a “dataflow.” The dataflow
determines the degree of data reuse (which is critical to the throughput and energy efficiency of the
accelerator) and determines the communication pattern between the compute and memory elements.
We identify three sources that affect dataflow—DNN topology, DNN dataflow graph (DFG)
partitioning and mapping, and DFG transformations. On the topology front, DNNs today use a mix of
convolution, recurrent, pooling, and fully connected layers; new layer types such inception,* dilated
convolution,'® and transposed convolution'* are also being actively explored. DNN DFG can be
partitioned in myriad ways to map over the compute array — layer by layer,' across layers,* kernels,
channels, or outputs, as each approach has different tradeofts for data reuse and energy efficiency. The
DFG can also be transformed by removing some of the edges whose weights are zero or close to
zero>® to reduce power consumption inside DNN accelerators. Naturally, each of these three
approaches can lead to unique and often irregular (especially with fused layer* or sparsity
optimizations™® dataflows. Dataflows directly impact the performance and energy efficiency of
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Figure 1. (a) Compute unit pool abstraction provided by MAERI. (b) MAERI architecture to support the
abstraction, and (c) Switchlet architectures. (d) Networks in MAERI for data distribution (fat tree with
local forwarding at leaves) to the multiplier switchlets (a)—(c) and collection (fat-tree with local
forwarding at upper levels) to the buffer (d)—(f). Red links indicate insufficient bandwidth or link conflicts.
(9) and (h) show examples of mapping irregular dataflows over MAERI.
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accelerators, as they have a direct impact on the amount of data movement, data reuse, and memory
accesses, as prior works have shown.”!?

Unfortunately, state-of-the-art DNN accelerators today, such as Google TPU,® Eyeriss,' and their
variants, employ dense two-dimensional arrays—which are optimized for a very regular dataflow,
namely dense matrix multiplications present in convolution operations. Irregular dataflows can lead to
heavy underutilization [for e.g., some long short-term memories (LSTMs) only utilize 4% of the
multiply-accumulate (MAC) units on the TPU].® We claim that the reason DNN accelerators today
cannot map arbitrary dataflows is because the interconnection fabric connecting the MAC units are
either limited in terms of their connectivity (e.g., mesh), or their bandwidth (e.g., bus). Our
community’s approach to addressing this issue has been quite reactive—every new DNN topology/
DFG mapping/sparsity optimization has led to a new DNN ASIC proposal.*™® This makes the
hardening of DNN accelerators into an IP or a discrete chip that is future-proof for the rapidly evolving
DNN landscape impractical.

How do we design a single accelerator substrate that can handle the growing number of dataflows
resulting from multiple kinds of layers, dense and sparse connections, and various partitioning
approaches? We propose to make the interconnects within the accelerator reconfigurable. Our insight is
the following: The DNN DFG is fundamentally a multidimensional MAC calculation. Each dataflow
is essentially some kind of transformation of this multidimensional loop.” Thus, at the heart of each
dataflow that exists today or might be proposed in future, is still a collection of MAC operations spread
across the processing engines. We propose to design DNN accelerators as a collection of multiply and
adder engines, each augmented with tiny configurable switches (called switchlets) that can be
configured to support different kinds of dataflows. Our design is called multiply-accumulate engine
with reconfigurable interconnect (MAERI). MAERI is a communication (rather than a compute)-
centric approach for designing DNN accelerators. Figure 1 shows an overview. It enables on-demand
allocation of multipliers and adders depending on the dataflow by configuring the switches, thereby
providing high compute utilization. It also provides high-bandwidth nonblocking interconnect
topologies tailored to the communication patterns within DNN accelerators for maximizing data reuse
and minimizing stalls.

We demonstrate MAERI with multiple case studies. On average, MAERI reduces the run time by 42%
and 57% over Eyeriss,’ and 23% and 148% over Systolic Arrays® for state-of-the-art CNNs and
LSTMs, respectively. This translates to energy reductions of up to 36%.

BACKGROUND AND MOTIVATION

Deep Neural Networks

Neural networks are a rich class of algorithms that can be trained to model the behavior of complex
mathematical functions. Neural networks model human brain with a large collection of “neurons”
connected with “synapses.” Each neuron is connected with many other neurons and its output
enhances or inhibits the actions of the connected neurons. The connection is based on weights
associated with synapse. Therefore, computations for a neuron can be translated as weighted sum
operations. DNNs have multiple internal (called hidden) neuron layers before the final output layer that
performs the classification. DNNs also involve pooling and activation operations. Pooling is a
sampling operation that reduces output feature map dimensions by the pooling window size.
Activation is a nonlinear functions such as rectifier linear units. Pooling and activation operations
follow after some of hidden layers in a DNN. Therefore, the weighted sum consists of the majority of
computations in a DNN.

Spatial DNN Accelerators

The most dominant computation in DNNs, a weighted-sum, contains massive parallelization
opportunity for element-wise multiplications and accumulations. To exploits this parallelism, spatial
architectures with hundreds of processing elements (PE) fed by a global buffer have been the most
popular hardware substrate for accelerating DNNs.'>*° The PEs consist of fixed- or floating-point
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MAC unit and local scratch pad memory usually implemented using SRAMs. Global buffer is also an
SRAM-based scratchpad memory, but it has a larger size than local scratch pad memories in PEs.
Unlike GPUs, spatial architectures support direct PE to PE communication, enabling data reuse both
within and across PEs, reducing the number of memory accesses, and thereby energy consumption.

Network-on-Chip (NoC)

To support data reuse, spatial DNN accelerators use an on-chip communication substrate between the
PEs and the global buffer, called a NoC. Buses, meshes, and crossbars are the most popular NoC
topologies. Buses are cheap to implement but provide extremely low bandwidth (as they support only
one transmission at a time) while crossbars provide extremely high bandwidth but scale horribly in
terms of area and power; meshes provide a reasonable tradeoff between these extremes and are used
extensively in modern multicore CPUs. Mesh NoCs provide all-to-all connectivity that is required for
cache coherence traffic. However, they provide a skewed bandwidth distribution across the NoC links
for DNN traffic, as highlighted by prior work,’ leading to PE stalls. Moreover, their area and power are
proportional or higher than that of the PEs themselves, making them an inefficient design choice. To
mitigate these issues, most DNN accelerators today tightly couple a fixed number of PEs together
using buses' or trees>? or neighbor-to-neighbor connections,® and scale up by using hierarchical
NoCs.® Unfortunately, this approach naturally leads to under-utilization of PEs for irregular dataflows
due to the inflexibility of mapping across an arbitrary number of PEs, and leads to stalls if the
connections leading to the PEs do not support the required bandwidth for that dataflow. This work
addresses these challenges by designing an extremely light-weight communication fabric with the
right amount of flexibility to support arbitrary DNN dataflows, without requiring a full-fledged NoC.

APPROACH AND DESIGN

Communication Classes in DNN Accelerators

We classify communication flows within DNN accelerators’ into the following traffic classes.

e  Distribution: Distribution is communication from the global buffer to PEs, which delivers
weights and input activations to be computed in each PE. Distribution requires multiple
simultaneous unicasts or multicasts (depending on the accelerator implementation) from the
global buffer to the PEs.

e Local forwarding: Local forwarding is direct communication (forwarding) between PEs for
data reuse in convolutional layers, reducing the number of reads from the global buffer.
Local forwarding requires multiple simultaneous unicasts between PEs.

e Reduction: Reduction is direct communication between PEs for accumulating partial sums.
Each reduction requires multiple simultaneous unicasts between PEs.

e  Collection: Collection is communication from PEs to the global buffer to deliver final
output activations reduced within the PE array. Collection requires multiple unicasts from
one or more PEs (depending on how many unique outputs the array generates based on the
mapping strategy) to the global buffer.

We leverage these traffic classes to construct a communication-driven spatial DNN accelerator
architecture.

Designing a Fully Flexible DNN Accelerator

Supporting full PE utilization with myriad irregular DNN dataflows essentially requires DNN
accelerators to support customizable grouping of compute resources at runtime. To enable the illusion
of multiplier/adder pools for fully flexible DNN accelerator described in Figure 1(a), we separate out
the multipliers and adders from PEs to enable fine-grained mapping and embed them into tiny switches
to enable customizable groupings. We name the switches as multiplier switchlet and adder switchlet,
based on their functional units, and the entire architecture as MAERI, as shown in Figure 1(b).
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MAERI supports multiple dataflows by reconfiguring each switchlet to directly deliver its computation
results to the desired destination switchlet for correct functionality. This approach programs data
movement, not computation, unlike traditional computer systems, and allows users to fully explore
optimization opportunities that involve irregular dataflow.

A key requirement for enabling this functionality is the right set of physical connections between the
switchlets. Instead of using a full-fledged all-to-all NoC and pay its area, power, and latency
overheads, we design a novel interconnection topology tuned for the traffic classes described in the
previous section. MAERI uses two separate networks—a distribution network and a collection
network, as shown in Figure 1. MAERI’s interconnection is fat-tree-based hierarchical networks with
additional forwarding links for nonblocking reductions, which we discuss in the following section.

Distribution and Collection Networks With Local Forwarding
Distribution Network

The distribution network connects the global buffer to all the multiplier switchlets, and is responsible
for delivering inputs and filter weights. We list three features of our distribution network following the
order described in Figure 1(d)—(f).

Binary Tree. To support multicasting, we employ a binary tree-based distribution network, as shown
in Figure 1(d). Although a bus also provides multicasting functionality (and has been used in prior
accelerators),' tree-based distribution is more energy efficient because a tree activates only the links
going towards the destinations while a bus broadcasts data all the time, even for unicasts.

Fat Links. To support multiple multicasts simultaneously, we provide higher bandwidth at the upper
levels of the tree. When the bandwidth at each level is double the one at the lower level, the
distribution network can support N/2 (where N is the number of leaves), which constructs a fat tree.
This case is extremely beneficial to fully-connected layers because it requires unique data to be
delivered to each PE at the same time, but comes at the cost of large wire overhead and more switches.
Such a high bandwidth is, however, not required for convolutional layers where data reuse requires
lower distribution bandwidth. MAERI allows designers to choose either the same bandwidth or twice
at higher levels of the tree at design-time, based on the area and power budget of the accelerator. This
is shown in Figure 1(e).

Local Forwarding Links. The leaves (multiplier switchlets) in the distribution network are connected
to each other directly, for local forwarding of weights between the multipliers, as shown in Figure 1(f).
This reduces the number of reads from the global buffer, and reduces the bandwidth requirement from
the distribution tree. Since we control the computation mapping across the multipliers, we only need
unidirectional forwarding links.

Collection Network

The collection network performs multiple simultaneous reductions and delivers multiple output
activations to the global buffer via activation units. We call our topology as an augmented reduction
tree (ART). We list three features of ART following the order described in Figure 1(g)—(i).

Binary Tree. Binary trees are well suited for performing reductions and have been used in prior DNN
implementations to implement adder trees within PE clusters and form our strawman design. However,
they have a key inefficiency: the fixed topology of a tree is inherently inefficient whenever the number
of partial sums to be accumulated is smaller than the width of the adder tree. Figure 1(g) illustrates this.
Suppose there are 16 multipliers, all connected via a 16-node binary reduction tree. Each node in the
reduction tree is an adder. This tree is perfect for performing a reduction for a 16-input neuron.
However, suppose we map three neurons over these multipliers, each generating five partial sums, as
Figure 1(g) shows. Each neuron requires four additions to generate an output, so the total additions
required is 12. The reduction tree contains 16 adders, which should be sufficient to perform the
additions for all neurons in parallel. However, the four links in red are shared by multiple neurons,
limiting the tree from generating all three outputs simultaneously.

Augmented Forwarding Links. We introduce forwarding links at intermediate levels between
adjacent adders that do not share the same parent, as Figure 1(h) illustrates, to overcome the challenge
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of supporting multiple parallel reductions. Using these forwarding links, neuron 1 and 2 can perform
reduction simultaneously. However, neuron 1 still conflicts with neuron 2 because of limited
bandwidth near the root node highlighted as red in Figure 1(h).

Fat Links. As Figure 1(i) shows, we provide extra bandwidth near the root so that multiple reduction
results can be delivered to the root node connected with global buffer. With this final feature, we
construct a ART, a key component of MAERI.

In the following section, we discuss how these network structures enable mapping arbitrary dataflow
using case studies from DNN layers.

Mapping Regular and Irregular Dataflows Over MAERI

To enable efficient mapping of regular and irregular dataflows on the same architecture, MAERI
constructs instances called virfual neuron (VN) for each neuron and map them onto the computation
resources.

Virtual Neurons

Because each weighted-sum operation corresponds to a neuron in each DNN, grouping compute units
for a neuron is analogous to constructing a virfual neuron (VN) structure inside the DNN accelerators.
Therefore, we name a group of compute units allocated for a neuron as a VN. Note that different
dataflows can effectively be viewed as different neuron sizes; thus we can abstract various dataflows
into the size of VNs. For CNNs, VN sizes for convolutional, pooling, and FC layers are weight filter
size, pooling window size, and input activation size, respectively. For LSTMs, VN sizes for gate
values, state, and output computation are (input size) +2, (input size) +2, 2, and 1, respectively. The
problem of mapping different dataflows is analogous to mapping different sized virtual neurons over
the multipliers and adders. Moreover, sparsity and cross-layer* mapping lead to multiple VN sizes at
the same time.

Mapping Example

MAERI supports simultaneous mapping of VNs with different sizes, as shown in Figure 1(j) and
(k). We present two mapping examples: a sparse convolution whose full filter size is 9 in Figure 1(j),
and the forget/input/output gate computation of an LSTM in Figure 1(k). For sparse convolution, we
map virtual neuron 0, 1, and 2 for weight channel 0,1, and 2 for the 6th convolutional layer of
VGGnet-16'° and assume the number of nonzero weights are 5, 6, and 4, respectively. MAERI
supports structured weight sparsity that does not require dynamic pair matching of input and weight
values. Because weight values are known before runtime, we utilize a simple compiler technique to
order input values corresponding to the structural sparsity we exploit.

For LSTM example, we map gate computation of a hidden layer in Google translation decoder
LSTM." Because the input size of a hidden layer is 1024, we fold it onto 16 multiplier switchlets in
this example. The mapping (i.e., VN construction) is performed by the ART reconfiguration controller.
The controller recursively inspects active multiplier switch for a virtual neuron and determines the use
of each forwarding link, as described in supplementary material.

Dataflows and Mappings Supported by MAERI

With the capability of constructing arbitrary sized virtual neurons at runtime based on the actual
neuron sizes, MAERI can map any DNN layer, partitioning, and weight-sparsity approach, since
DNNs are which are inherently multidimensional MAC operations. The only limiting factor of
mapping is the number of multiplier and adder switchlets of MAERI. For example, if the size of a
neuron exceeds the number of multiplier switchlets of MAERI, the neuron needs to be temporally
folded. This limitation is common in any hardware accelerator because of finite resources. MAERI’s
flexible ART structure enables it to support anywhere from VNs of size 1 to the entire array size.
However, the number and size of the VN affects the distribution and reduction bandwidth
requirement. When the number of VN is large, the bandwidth requirement also increases. We present
the effect of distribution and reduction bandwidth in Figures 2(m) and 3. Moreover, MAERI is tuned
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for enabling efficient spatial reduction. Given a DNN layer, finding the optimal dataflow,'> and
optimal mapping strategy over MAERI is an open research question for future work.

We also note that one can potentially swap the MAERI multipliers and adders with other compute
units/ALUs, enabling MAERI to map and run any variant of map-reduce-based applications.

IMPLEMENTATION

We implement MAERI architecture with bluespec system verilog and synthesize the design using a
Synopsys 28-nm educational library. We compare the area and power of MAERI with Eyeriss' and a
systolic array (similar to TPU).® We provide two flavors of comparison; compute-match and area-
match in Figure 2. The compute match fixes the number of PEs (or multiplier switchlets) to 168, the
number of PEs in Eyeriss, and the area-match restricts the area to that of Eyeriss, placing as many
compute units as possible.

In compute-match, MAERI consumes 37% less area but 7% more power compared to Eyeriss.
However, MAERI requires 32% more area and consumes 96% more power compared to the systolic
array in compute-match comparison. The area is the cost of reconfigurability that provides
performance benefits. Please note that the power consumption is the postsynthesis power that does not
consider actual run time. Because MAERI reduces overall runtime, the actual energy consumption is
comparable in CNNs and less in LSTMs, as we show later in Figure 2. In area-match, MAERI and
systolic array houses 2.33 x and 7.09 x more compute units compared to Eyeriss with 98% and 137%
more power, respectively. Although systolic array is area- and power-efficient compared to MAER], it
requires more runtime and sometimes more energy with irregular dataflows because of its rigid
interconnects. In the following section, we discuss such run time and energy aspects. We also study the
area impact of the distribution and reduction bandwidth in Figure 2(f) and (g). With higher distribution
bandwidth, additional simple switchlets are needed, adding area. Increased reduction bandwidth
however only adds additional forwarding wires through the adders, no logic, leading to minimal area
increase. In all cases, we observe the SRAMs in the prefetch buffer dominating area.

EVALUATION

Runtime and Energy. To evaluate runtime, we run RTL simulation and measure total runtime in
cycles. We compute the power-delay product to estimate energy consumption. For workloads, we use
Alexnet'? and VGGnet-16,'" and five RNNs (LSTM) from recent publications such as Google
translator."! We use an 88 systolic array and a row-stationary accelerator with 64 PEs similar to
Eyeriss' as our baselines. MAERI has 64 multiplier switchlets to match the number of compute units
with the baselines. Figure 2(h)—(m) shows our results. In CNNs, MAERI reduced the run time up to
64% and by 42% on average. These benefits come from (i) higher multiplier utilization in MAERI
compared to the baselines (depending on the filter dimensions), and (ii) fewer stalls (due to high
bandwidth distribution and collection networks). The reduced runtime also decreased the energy
consumption. MAERI requires 28% and 7.1% less energy in average compared to Eyeriss and Systolic
array, respectively. In LSTMs, MAERI reduces 60% and 55% of runtime and 21% and 52% less
energy compared to the systolic array and row-stationary accelerator. MAERI is significantly better in
LSTMs because of high distribution bandwidth and its flexibility of mapping large size of neurons that
appear in LSTMs.

Impact of Communication Topology and Bandwidth on Utilization and Stalls. The topology of
the reduction network of MAERI affects the both the mapping efficiency (i.e., whether or not the
multiplier can map a computation) and its utilization (i.e., whether or not it can be used every cycle).
This is because it determines how many spatial reductions can occur simultaneously. Figure 2(i)
quantifies the utilization of the MSs in steady state (while processing nonedge input volume) with
various VN sizes with three reduction network choices—binary adder tree, fat adder tree, and ART.
We assume sufficient bandwidth from the distribution tree in this experiment. The binary adder tree
can provide 100% utilization only when the VN size is close to the multiplier array size (64 in this
case). The fat tree provides 100% utilization only when VN size is powers of two. MAERI provides
close to 100% utilization for all VN sizes, except for cases when 64 mod VN size is not zero. This is
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Figure 2. (a)—(g) Area requirement and postlayout power consumption of MAERI, systolic array (SA),
and Eyeriss. (a) and (b) assume the same number of compute units (PE/multiplier switchlet). (c) and (d)
assumes the same area as Eyeriss for all designs. (e) shows the area over number of PEs. (f) and (g)
shows the area increase by extra distribution and reduction bandwidth, respectively, for MAERI with 64
multiplier switchlets. (h)—(m) Total run time normalized to an ideal accelerator with 64 compute units
(PEs/multiplier switchlets) that has infinite NoC bandwidth and one-cycle compute units for CNN (h)
and LSTM (j). Energy consumption normalized to that of MAERI for Alexnet C1 (i) and LSTMO (k).
Numbers below each LSTM label indicates the LSTM dimension (input size and number of hidden
layers). () The effect of reduction network topology on MS utilization in steady state with 64 multipliers
and adders. (m) The effect of bandwidth on stall rate when processes nonedge inputs in VGG16-
CONV1 with 64 multiplier switches. We present stall rate in a heatmap with distribution and reduction
bandwidth on x and y axis, respectively. The dark area shows bandwidth pair with high stall rate. White
space shows bandwidth combinations that achieve zero stalls.

not a limitation of the topology—Dbut of the mapper since we do not have a compiler to support
partial VN yet. The figure also shows that mapping multipler smaller VNs is more efficient than
larger VNs.
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The bandwidth of the distribution and reduction networks of MAERI affects the stalls at the
multipliers and adders. Insufficient distribution bandwidth results in it waiting for new weights/inputs,
while insufficient reduction bandwidth serializes reductions across the VNs. This naturally depends on
the DNN layer being mapped. Figure 2(m) shows the percentage of multipliers stalled when running
VGG16-CONV1 over MAERI with various combination of distribution and reduction bandwidth. We
observe that the bandwidth needs to be larger than 16 and 8 x, respectively, to have zero stalls in the
example.

Impact of Communication Bandwidth on Runtime and Energy. Figure 3(a)—(d) presents the
LSTM and CNN run time and energy of MAERI with varying bandwidth of the distribution network.
A 16x design is a fat tree, a 1 X is a binary tree, with other data points in between. The LSTM
computation is highly sensitive to distribution bandwidth because of its lack of data reuse opportunity,
unlike CNNs. Thus, a wide distribution bandwidth significantly reduces runtime, as shown in Figure 3
(a). However, in CNNs, distribution bandwidth does not provide runtime improvement beyond a
certain point. This is because the maximum distribution bandwidth requirement in a steady state (when
processing nonedges, which is the common case) is determined by the number of VNs mapped on
MAERI. We can interpret these results as roof-line performance as suggested in a recent work.® The
energy consumption presented in (b) and (d) implies that extra distribution bandwidth can reduce total
energy consumption. However, beyond a certain point, energy consumption greatly increases because
of roof-line performance limited by the number of VNs and increased power consumption to support
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Figure 3. Impact of distribution/reduction bandwidth on LSTM (a)/(e) run time and (b)/(g) energy and
CNN (c)/(g) run time and (d)/(h) energy. All the results are based on 64-multiplier switchlet MAERI and
64 x bandwidth at the root to remove any impact of reduction bandwidth. LSTM and CNN results are
normalized to the results of 16 x bandwidth on LSTMO and Alexnet C1, respectively.
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extra bandwidth. The 16 distribution bandwidth requires 16% more area compared to 1x, as
presented in Figure 2(f). Therefore, based on the target application, distribution bandwidth should be
carefully selected.

Reduction bandwidth also dramatically changes the overall runtime, as Figure 3(e) and (g) present.
However, unlike distribution bandwidth, the cost of extra reduction bandwidth is relatively minimal as
Figure 2(f) and (g) show. Therefore, energy consumption results show a similar pattern as runtime, as
Figure 3(f) and (h) present. Also, reduction bandwidth reaches its roof-line performance earlier than
distribution bandwidth because the roof-line of reduction bandwidth is determined by a number of
virtual neurons with smaller order than distribution. Therefore, it is beneficial to employ roof-line
reduction bandwidth for target neural network. From an area perspective, providing 16 x reduction
bandwidth has nearly the same area cost as the 1 x reduction bandwidth since our collection structure
is light-weighted so the area increase is minor compared to the entire accelerator area. For pure
collection network area, the area cost increases by 20% for 16 x reduction bandwidth, as presented in
Figure 2(g). This sublinear overhead is because the collection network is dominated by the adders—
the fat links are essentially bypass paths that do not add much to the area. However, note that the actual
benefits can be limited by the write bandwidth to the global buffer; larger reduction network
bandwidth than that of the global buffer does not improve the runtime.

CONCLUSION

Most DNN accelerators today interconnect PEs in a rigid tightly coupled manner which makes it
impossible to map irregular dataflows (due to layer types, cross-layer fusion, sparsity, and so on),
leading to under-utilization and/or stalls. We present a communication-driven approach called MAERI
to address this challenge. MAERI carefully places tiny switches along fine-grained compute resources
and connects them in topologies tuned for the traffic classes within DNN accelerators, namely
distribution, local forwarding, reduction, and collection. MAERI translates each dataflow into a
problem of mapping different sized neurons, which the MAERI networks support through
reconfiguration of the switches. This approach provides extremely high compute-unit utilization,
boosting performance, and energy-efficiency.
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