
BINDU: Deadlock-Freedom with One Bubble in the Network
Mayank Parasar Tushar Krishna

School of ECE, Georgia Institute of Technology, Atlanta, GA, USA
mparasar3@gatech.edu tushar@ece.gatech.edu

ABSTRACT
Every interconnection network must ensure, for its functional cor-
rectness, that it is deadlock free. A routing deadlock occurs when
there is a cyclic dependency of packets when acquiring the buffers of
the routers. Prior solutions have provisioned an extra set of escape
buffers to resolve deadlocks, or restrict the path that a packet can
take in the network by disallowing certain turns. This either pays
higher power/area overhead or impacts performance. In this work,
we demonstrate that (i) keeping one virtual-channel in the entire net-
work (called ‘Bindu’) empty, and (ii) forcing it to move through all
input ports of every router in the network via a pre-defined path, can
guarantee deadlock-freedom. We show that our scheme (a) is topol-
ogy agnostic (we evaluate it on multiple topologies, both regular and
irregular), (b) does not impose any turn restrictions on packets, (c)
does not require an extra set of escape buffers, and (d) is free from
the complex circuitry for detecting and recovering from deadlocks.
We report 15% average improvement in throughput for synthetic
traffic and 7% average reduction in runtime for real applications over
state-of-the-art deadlock freedom schemes.

KEYWORDS
Computer architecture, Network-on-chip, Interconnection network,
Deadlock

ACM Reference Format:
Mayank Parasar Tushar Krishna. 2019. BINDU: Deadlock-Freedom
with One Bubble in the Network . In International Symposium on Networks-
on-Chip (NOCS ’19), October 17–18, 2019, New York, NY, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3313231.3352359

1 INTRODUCTION
Deadlock-freedom is necessary for designing any functionally cor-
rect interconnection network. Routing-level deadlocks occur when
there is a cyclic dependency between the packets in the network as
they try to acquire the buffers. Prior solutions on routing deadlocks
can mainly be categorized into deadlock avoidance and deadlock
recovery.

Deadlock avoidance [9, 12, 19] designs the routing algorithm such
that a cyclic dependence between packets can never get created at
runtime to begin with by disabling certain turns. These turn models
are extremely popular in regular network topologies such as Mesh -
classic examples being XY, West-first and their variants [12]. These
turn models can be implemented for all packets or only those within

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOCS ’19, October 17–18, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6700-4/19/10. . . $15.00
https://doi.org/10.1145/3313231.3352359

certain escape virtual channels (VCs) [11]. Deadlock avoidance-
based solutions become challenging to adopt for irregular topologies
(which may occur due to heterogeneous SoCs, network faults, or
power-gating) [16] as they require complex analysis of the channel
dependence graph (CDG) to disable turns, and also lead to perfor-
mance losses due to non-minimal routes [16].

In deadlock-recovery [3, 16, 17], deadlocks are dynamically de-
tected and resolved. These solutions are amenable to arbitrary topolo-
gies [16, 17]; however, they are extremely complicated to implement
due to global deadlock-detection and resolution.

There is another class of solutions that achieves deadlock free-
dom using bubbles (i.e. empty VCs or buffers) in the network. These
techniques allow for cycles in the CDG but control injection of pack-
ets such that packets never get into a cyclic buffer dependency at
runtime [6, 7, 15]. The underlying theory, Bubble Flow Control [15],
states that one bubble within a cyclic dependence can ensure for-
ward progress. Multiple implementations of this theory exist today.
Critical Bubble Scheme (CBS) [7] and its variants [6] are the state-
of-the-art for rings and Torii; here one bubble in every ring is marked
as a critical bubble and circulates through the ring. Static Bubble
(SB) [16] embeds extra buffers at various routers at design time, and
turns them ON upon deadlock-detection to introduce a bubble. Brow-
nian Bubble Router (BBR) [14] reserves one bubble in every router
in the network, and circulates it across the router’s ports. CBS, SB
and BBR require 4k, O(k) [16], and k2 bubbles respectively in a k×k
mesh/torus1. More bubbles naturally lead to reduced throughput and
low buffer utilization.

In this work, called BINDU (Bubble in Irregular Network for
Deadlock pUrging), we demonstrate, for the first time, that it is
possible to provide deadlock freedom with just a single bubble
(referred to as a ‘Bindu’2 and defined formally in §3.1) in the entire
network. The Bindu moves through the network in a fixed path,
covering all the routers and their input ports in the network. During
its course the Bindu shuffles the packets present in the network,
naturally resolving any deadlock that comes in its path.

The following are the primary contributions of this work:
(1) A novel technique to guarantee deadlock freedom in arbitrary

irregular topologies by having one or more Bindus (empty
VC) in the entire network, and to force these Bindus to move
through-out the network at a periodic rate.

(2) BINDU frees the designer from any consideration of dead-
lock when designing their routing algorithm, allowing high
performance with minimal overhead.

(3) And evaluation of how BINDU performance compares with
previously proposed deadlock freedom techniques with both

1In practice, the number of bubbles needed during operation in CBS becomes higher
since transitioning from one ring to the other requires at least two bubbles in that ring.
2Bindu is a Hindi word, meaning ‘point’. With a collection of points, we can draw any
geometrical figure; similarly with BINDU we can make any topology deadlock free.

https://doi.org/10.1145/3313231.3352359
https://doi.org/10.1145/3313231.3352359

NOCS ’19, October 17–18, 2019, New York, NY, USA Mayank Parasar Tushar Krishna

synthetic traffic and real applications on both regular and
irregular topologies3.

The rest of the paper is organized as follows: §2 provides back-
ground information and related work on deadlock-freedom in NoCs;
§3 deep dives into the BINDU technique, discussing the concept,
proof of deadlock-freedom, and implementation; §4 then delves into
experimental results, and §5 presents conclusion.

2 BACKGROUND AND RELATED WORK
Deadlocks refer to a condition in which a set of agents (i.e. packets)
wait indefinitely trying to acquire a set of resources (input buffers).
Deadlocks primarily occur because of the cycles present in the
Channel Dependency Graph (CDG) of the topology. The CDG is a
directed graph, in which each node is a link in the topology and each
edge in CDG defines the order in which packets want to traverse the
topology to reach its destination. Since there could be multiple paths
from a given source to destination, there could be many edges in
CDG connecting two different nodes. These edges can form a cycle
in themselves leading to a deadlock. The choices of the path that a
packet can take are determined by the routing algorithm, therefore
CDG is the function of both routing algorithm and topology. We
classify deadlock resolution solutions in NoCs into the following cat-
egories: deadlock-avoidance, deadlock-recovery, and bubble-based4.
A High-level qualitative comparison of BINDU with state-of-the-art
schemes have been paraphrased in Table 1.
2.0.1 Deadlock Avoidance. In deadlock avoidance [8, 9, 19] schemes,
the CDG is made acyclic via turn-restrictions in the routing algo-
rithm (e..g, XY, West-first, and so on in a Mesh, Up-Down [18]
routing in irregular topologies), ensuring that a cyclic dependence
is never created during runtime. However, the loss in path-diversity
leads to loss in network throughput. To address this, escape VC
[11] based schemes are often used, where the turn restrictions are
present in only a subset of VCs, while the rest of the VCs can use
all paths. The CDG can therefore have cycles, but there is at least
one acyclic escape path to which all packets have access. Escape
VC based schemes however lead to an increase in the total number
of VCs, adding area and power at every router. Another key chal-
lenge with the aforementioned deadlock avoidance schemes, beyond
the performance or area/power implications, is that they are highly
topology-dependent, since every topology has a unique CDG. As
topologies become irregular (due to heterogeneity, or waning sili-
con reliability or due to power gating of routers/links), coming up
with unique turn restrictions and encoding them in the packets is an
expensive operation.
2.0.2 Deadlock Recovery. Another school of thought for resolving
deadlocks stems from the observation that deadlocks are a rare phe-
nomenon, therefore instead of adding turn restrictions or extra VCs
in the routers to avoid deadlocks, one should detect, locate, and
resolve deadlocks. Deadlock recovery algorithms allow packets to
take all paths provided by the topology to reach to their destination.
However, in doing so, the packets can get deadlocked due to cyclic
CDGs. To recover from it, these techniques require detection via
3We would like to note that the focus of this work is not on the important problem
of dynamic fault-tolerance; rather it guarantees deadlock freedom in static irregular
topologies, which may be created due to faults or at design time.
4In the literature, bubble-based schemes are often classified as flow-control based
schemes within deadlock avoidance [17]. We classify them separately to allow us to
take an in-depth view and compare them against BINDU.

Table 1: Qualitative Comparison of Deadlock Freedom Mechanisms

Mechanism
Full
Path Di-
versity

High
Through-
put

No Ex-
tra VCs

No
D’lock
Detect

Topology
Agnos-
tic

CDG [9] ✗ ✗ ✓ ✓ ✗

Escape VC [10] ✓/✗** ✓ ✗ ✓ ✓/✗**
BFC [7, 15] ✓ ✗ ✓ ✓ ✗

Deflection [13] ✓/✗* ✗ ✓ ✓ ✓

Recovery [16, 17] ✓ ✓ ✓ ✗ ✓

BBR [14] ✓ ✗ ✓ ✓ ✓

BINDU ✓ ✓ ✓ ✓ ✓

*At low-loads, full path diversity is available. But at high loads, packets cannot control
the directions or paths along with they are deflected.

** Within esc VC: limited path diversity + requires topology info to drain.

0 1

43

2

5

6 7 8

0 1

43

2

5

6

7

8

4 Intra-router Bindu
movement

(a) (b)
Inter-router Bindu

movement

startstart

0 1

43

2

5

6 7 8

B

4

7 1

206 8

3 5

Bindu-1 Path

Bindu-1 Tree

4 7 6 3 6 7 8 5 8 7 4 1 0 1 2 1 4

5

Intra-router
Bindu

movement

1

2

3
4

5 6 9

8 7
10

11

16

14
15

12
13

8 7

7.1

7.2
7.3

(c)
Figure 1: Examples of Bindu-paths. Each Bindu must go through all
input ports of all routers of the network, at least once. (a) Bindu mov-
ing through all ports of a router before jumping to the next router, (b)
Bindu jumping between input ports of different routers throughout its
path, (c) A tree-based Bindu-path for an irregular topology
timeouts, location via probes, and resolution via synchronization
messages [2, 3, 16, 17]. Implementing deadlock recovery is therefore
quite complex. Moreover, this technique is not scalable; as network
sizes increase, the probability, shape, and length of deadlock-ring
also increases, making it even more difficult to locate them dy-
namically [16]. There have also been proposals to drop flits in the
network [23], if they fail to win the switch for a threshold number
of tries, thereby breaking any deadlocks. However, this approach
comes with the overhead of tracking and re-transmitting the dropped
flit as NoCs do not tolerate packet/flit losses.
2.0.3 Bubble based approaches. Bubble flow control (BFC) [15]
based approaches fall in between the avoidance and recovery based
solutions presented above. They allow cyclic CDGs - but guarantee
that cycles will actually not get created at runtime by ensuring that
at least one bubble (i.e., empty VC [7, 16] or flit-buffer [6]) will
be present within any cycle, to provide forward progress. Thus the
most popular implementations of BFCs is in rings and torii [6, 7, 15].
Challenge with BFC and its variants is that each ring in the topology

BINDU: Deadlock-Freedom with One Bubble in the Network NOCS ’19, October 17–18, 2019, New York, NY, USA

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8
Deadlock
cycle

Faulty link

Bubble movement

Packet
(destination 0)

(a) 2 deadlocks present in network having
two Bindus initialized randomly (c) Deadlocks resolved

0 1

43

2

5

6 7 8

0

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8

(b) Two Bindus showing both inter and intra
bubble movement to resolve deadlock

B

B Bindu-2

B

B

B

43
7

B

4

3
7

B 4

3
7B

7 858
B

7 858
B

4

5
B

7B
3

0

1
4

7 8
5

8 B

8

B Bindu-1

1 2 3 1 2 3

Figure 2: Walkthrough figure showing the BINDU in action. Here deadlock involving router-0,1,3 and 4 is resolved by intra-router Bindu movement
of Bindu-1 and deadlock involving router-4, 5, 7 and 8 is resolved by inter-router Bindu movement of Bindu-2. Network state corresponding to each
type of Bindu movement is shown in sub-figure (b) and (c) respectively.

needs at least one bubble (and two for injection), leading to a loss in
throughput. BFC has been implemented in arbitrary topologies [22],
two such example of prior works are as follows. Static Bubble [16]
is a recovery based scheme where a subset of routers have extra
buffers inserted at design time that are ’off’. Upon location of the
deadlocked ring, the buffer in one of the routers is turned on to
introduce a bubble into the ring. However, this scheme requires
expensive circuitry for deadlock detection and turning the bubble
on and off. BBR [14] keeps one bubble in every router, and keeps
it circulating through all the input ports of the router to introduce
bubbles in deadlocks going through that router. However, because
of the significant number of bubbles in the network (one per router)
this scheme suffers from low throughput.

In this paper, we present a deadlock-freedom solution using a
single bubble (called Bindu) in the entire network.

3 BINDU NETWORK
3.1 Definitions
We formally define terms here that we will use throughout the paper.

Bindu: In BINDU, Bindu refers to a reserved packet-sized empty
VC, that is instantiated at the starting of the network run. It makes
pro-active movement throughout the network covering all the input
ports of every router in the network, as shown in Fig. 1. Unlike
‘Bubble’ used in previous works [7, 15], no packet can sit inside the
Bindu. As a Bindu procatively moves through the network, packets
get displaced, as shown in the walk-through Fig. 2.

k-Bindu: BINDU networks can incorporate multiple Bindus
within the network, each following its own path as shown in Fig. 1(c)
and Fig. 2. We refer to this configuration as ‘k-Bindu’, where ‘k’ is
the number of Bindus instantiated at the starting of network run.

Bindu movement: Movement of Bindu from one VC to another
within the router or across routers. Moving a Bindu from <Router_i,
Port_m, VC_k> to <Router_i+1 Port_n, VC_o>, effectively means
reading the packet from <..., VC_o> and writing it to <..., VC_k>5.

5We assume Virtual Cut-Through, i.e., all VCs that the Bindu traverses are sized to hold
the largest packet. Wormhole designs will be discussed in §3.6

Blocked Packet: A packet which is indefinitely stuck because it
is part of a deadlock ring.

Unblocked Packet: A packet which might be temporarily stalled,
because of congestion in the network or unavailability of credits at
the downstream router. However, it is guaranteed to eventually leave
the router.

Empty slot: An empty VC in a router.

3.2 Basic Idea and Walk-through Example
Deadlocks are characterized by cyclic dependency of packets, which
renders the forward movement impossible. BINDU tries to resolve
this cyclic dependency using one or more Bindus in the network. A
Bindu can be randomly initialized at one of input VCs of any router,
barring the injection input VCs. Multiple Bindus can co-exist within
a router - but cannot reserve the same VC at the same time.

Each Bindu pro-actively moves in a predefined path which cycles
back from where it started (Fig. 1). Bindu’s movement results in the
partial shuffling of packets in the network. This results in naturally
resolving any deadlock cycle which comes in Bindu’s path. To
understand the BINDU technique in more detail, let us walk-through
the scheme with an example. Fig. 2(a) shows two deadlocks in a 3x3
Mesh; the link between router-2 and router-5 is faulty, resulting in an
irregular topology. The number on the packet refers to its destination
router-id. Even though one Bindu is enough to resolve the deadlock,
we show two Bindus in the walk-through figure to underline the
generality of the scheme.

In Fig. 2(b), we focus on the deadlock between packets in Routers-
0, 1, 3 and 4. Bindu-1 moves within Router-4 from the North to the
South to the West port. This results in an empty slot in the South
port, which can now be used by the packet stuck in Router-1 to make
forward progress, resolving the deadlock.

In Fig. 2(c), we focus on the deadlock between packets in Routers-
4, 5, 7 and 8. Bindu-2 jumps from Router-8 to Router-7. An impor-
tant point to observe is that Bindu-2 first traverses within Router-8
from South to West (similar to Bindu-1), and then jumps to the con-
nected Router-7 to its East port. The deadlock is resolved as Bindu

NOCS ’19, October 17–18, 2019, New York, NY, USA Mayank Parasar Tushar Krishna

1

2

3

4
Eject from

deadlock ring

7

12

9 Unblocked
Packet
dest. 9

1

2

3

4

Packet
(destination 0)0

B
leaves

deadlock-ring

1

2

3

4

1

24

B 9

Bindu-
Movement

1

2

3

4

1

24

9

Deadlock
cycle

Deadlock
resolved

1

2

3

4
Eject from

deadlock ring

7

12

1

2

3

4

B

empty slot into
deadlock-ring

1

2

3

4

1

24

B

Bindu-
Movement

1

2

3

4

1

24

Deadlock
resolvedNetwork

12

1

2

3

4

1

24

B 2

Bindu-
Movement

1

2

3

4

1

24

2
9
B

1

2

3

4

1

2

2
9

B

3

1

2

3

4

1

2

2

1

2

3

4

1

2

3 3

12
3

11
B

B
1

2

3

4

1

2

3 3

Eject from
Network

Deadlock
resolved

Blocked
Packet
dest. 0

0

(a) (b)

(c)

Direction of pkt move
to reach its destination

Figure 3: The figure shows: (a) The way Bindu resolves the deadlock when it brings an empty slot to the deadlock ring. (b) How Bindu resolves the
deadlock when it brings a unblocked packet to the deadlock ring. (c) Bindu resolves the deadlock by shuffling the packets present within the deadlock
ring. The number inside the packet refers to its destination.

replaces an earlier blocked (i.e., deadlocked) packet at West input
port of Router-8 with an empty VC.

All Bindus need to traverse through all ports of all routers, as we
discuss in §3.3. The implications of Bindu’s intra and inter-router
movements on the router micro-architecture are discussed in §3.6.
3.3 Bindu Path
All Bindus move through all the input ports of every router in the
topology (both regular and irregular) at a periodic rate indefinitely.
There can be multiple possible paths. Fig. 1 shows three possible
paths for Bindus in a 3×3 Mesh. In Fig. 1(a), each Bindu snakes
through the network routers, moving through all input ports at each
router; in Fig. 1(b), Bindus jump between input ports of different
routers in each step; Fig. 1(c), the Bindu uses a tree to loop through
the entire network as it is an irregular topology where the original
snake does not work. As mentioned earlier, there can be more than
one Bindu in the network, and each Bindu can choose different paths.
The Bindu-path is encoded within each router; i.e., each router has a
preset order of input ports through which the Bindu should move, and
a preset neighbor to which the Bindu should jump. The next inport-id
(intra-router) or router-id (inter-router) where Bindu needs to move
is provided by the current router. A router can have multiple paths
encoded, indexed by the Bindu id. We discuss static vs. dynamic
configurability of Bindu paths in §3.6.
3.4 Bindu Movement
Moving a Bindu from VC-A to VC-B requires explicitly moving
the packet from VC-B to VC-A. VC-B could be a VC within the
router (during intra-router Bindu movement), or at a neighboring
router (during inter-router Bindu movement). Moving a Bindu across
routers can lead to a temporary misroute of the packet.

In our design, we constrain Bindu to move only across VC-0
within the input ports of all routers in the network during both intra-
and inter-router Bindu movement. This decision simplifies the router
micro-architecture for BINDU (§3.6). VC-0 is Virtual-Cut Through.
A Bindu movement takes f cycles, where f is the number of flits
in the packet. Naturally, the Bindu movement period p needs to be
greater than the size of the largest packet that can sit in VC-0.

3.5 Proof of Deadlock freedom
In this section, we explain the proof of BINDU technique for dead-
lock freedom using Fig. 3 as reference. We refer to the terms defined
in §3.1 and provide the following arguments.

(1) By the virtue of the Bindu’s looped path, it is guaranteed to
visit every deadlock ring in the network.

(2) As Bindu moves into the deadlock ring and then moves out
of deadlock ring it either brings a fresh packet or an empty
slot into the deadlock ring.

(3) If Bindu brings in the empty slot at its place (Fig. 3-(a)), then,
by default, it resolves the deadlock as the earlier deadlocked
packet can take up that empty slot breaking the deadlock
dependency.

(4) If Bindu brings in a fresh packet to the deadlock ring, then
there could be two possibilities. This fresh packet can either
be ‘unblocked’ or ‘blocked’, as defined in §3.1.

(5) If the fresh packet is unblocked (Fig. 3-(b)), it will naturally
leave the deadlock ring; this will create an empty slot in the
deadlock ring, and deadlock will naturally get resolved as
described in point 3.

(6) However, if the fresh packet is blocked, then deadlock would
persist until the next Bindu movement into the deadlock ring.
If the next Bindu movement creates the empty slot or brings
in unblocked fresh packet to deadlock ring, then deadlock
will get resolved as mentioned in point 3 and point 5.

(7) There could be a very rare, corner case in which Bindu move-
ment will keep bringing a blocked packet to the deadlock
ring (Fig. 3-(c)). This, in fact, means that the packets being
brought into the deadlock ring by Bindu are part of the same
deadlock ring. Here, Bindu movement effectively shuffles the
packets within the deadlock ring. This shuffling of packets
within the deadlock ring ensures that eventually, at least one
packet would reach to its destination because of shuffling and
eject-out of the network as shown in Fig. 3-(c). This would
finally lead to deadlock resolution.

BINDU: Deadlock-Freedom with One Bubble in the Network NOCS ’19, October 17–18, 2019, New York, NY, USA

(8) A final pathological corner case could be when all packets
of the network are in one big deadlock loop (e.g., this could
occur in a ring topology). In such a scenario, the movement
of packets due to Bindu will continue to remain in a cyclic
loop. However, once a Bindu completes a full looped path, all
packets would have effectively been spun around, as described
in [17]. Eventually after ‘k’ spins one of the packets would
reach its destination and eject out from the network. This
would again lead to deadlock resolution.

It is worth noting that we did not actually observe either (7) or (8) in
our extensive experiments.

Livelocks: Livelock is the condition where a packet keeps moving
indefinitely but never reaches its destination. Recall that packets get
misrouted by one-hop due to a Bindu movement. As long as the
packet makes two forward hops before a Bindu misroutes it again, it
will not livelock. Since Bindu paths are fixed, for the Bindu to arrive
at the same router again, it will take N × r × p cycles, where ‘N’
is the number of nodes, ‘r’ is the router radix and ‘p’ is the Bindu
movement period. During this time, if the network is not congested,
a packet will definitely move forward two hops (even if N and r
are small, p can be set to a large enough value to ensure two hops).
If the end points are congested, it is theoretically possible, though
extremely unlikely, for the same packet to be stuck at a router till the
Bindu traverses the entire network and returns, and get misrouted
again. However, as long as the network is deadlock-free (proven
above), it cannot be congested indefinitely, thereby ensuring that
eventually the packet will move forward two hops, and thus not
livelock.

vc0

vc3
vc2
vc1
vc0

vc0
vc3
vc2
vc1

vc3
vc2
vc1 vc0

vc
3

vc
2

vc
1

Mov

Mov

Mov

Mov

Network
In-LinkNetwork

In-Link

Network
In-Link

Network
In-Link

vc0
vc1

vc2
vc3

From
Core

Network
Out-Link

Network
Out-Link

Network
Out-Link

Network
Out-Link

To Core

Route compute

SW Allocator

VC Allocator

Credit
Management

Unit

Bindu
Movement Unit

Bindu Bus
Arbiter

Bindu
Bus

U-tu
rn

crossbar

Intra-router Bindu Movement

Inter-router Bindu Movement
(a)

(b)

P

B

BINDU-Router

vc0

vc3
vc2
vc1
vc0

vc0
vc3
vc2
vc1

vc3
vc2
vc1 vc0

vc
3

vc
2

vc
1B

Mov

Mov

Mov

Mov

Network
In-LinkNetwork

In-Link

Network
In-Link

Network
In-Link

vc0
vc1

vc2
vc3

From
Core

Network
Out-Link

Network
Out-Link

Network
Out-Link

Network
Out-Link

To Core

Route compute

SW Allocator

VC Allocator

Credit
Management

Unit

Bubble
Movement Unit

Bindu Bus
Arbiter

Bindu
Bus

U-tu
rn

crossbar

Intra-router Bindu Movement
(b)

BINDU-Router

Figure 4: Router micro-architecture of BINDU. Additional compo-
nents over baseline router are highlighted

3.6 Router micro-architecture
The router micro-architecture is shown in Fig. 4. We discuss the key
modules incorporated to facilitate Bindu movement:

Bindu-bus: This is a bus connecting all the input ports, and is
used to facilitate movement of the Bindu between VC-0 of the
input ports (by moving the packet into the VC occupied by Bindu
previously). A Bus suffices since only one Bindu can move per cycle;
if multiple Bindus are concurrently present at a router, their period is
skewed such that they do not contend for the bus in the same cycle.

Credit management unit: The upstream router is agnostic to the
fact that there is a Bindu or an actual packet sitting at the downstream
router. This implies that whenever Bindu replaces a packet in the

Fault random
location for

12-fault

Fault random
location for

8-fault

Fault random
location for

4-fault

Fault random
location for

1-fault

static Irregular 8x8 Mesh
created due to faults

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

Figure 5: The figure shows irregular topologies, created out of a regu-
lar mesh. Faults in the network are shown as link failures at a random
location, distributed randomly throughout the topology

router, there is no need to send updated credit signals to upstream
routers involved. However, when Bindu replaces an empty slot,
within the router, then both upstream routers, the one connected
to the input port where Bindu was originally present and the other
connected to the input port which originally had an empty slot, needs
to be updated with credits accordingly.

Bindu movement unit: It is responsible for the overall movement
of Bindu within the router until it leaves the router at a specific period.
It comprises of two registers - one holding the Bindu movement
period, and the other encoding its path within the router, including
the output port connecting to the next router to route the Bindu to.

Multi-flit packets with Virtual Cut-Through (VCT) Routers.
If the head-flit is present in VC-0 and it is the turn of this VC to turn
into a Bindu, the VC is locked till the entire packet arrives and is
not allowed to take part in switch arbitration. Once the entire packet
arrives, transfer of this packet into the VC previously occupied by
the Bindu is performed. The intra router Bindu period is chosen
appropriately at design time such that entire packet can arrive and
move before the next movement. If the head flit has already left,
then the packet is allowed to naturally drain into its downstream VC
without moving into the Bindu VC.

Multi-flit packets with Wormhole Routers: BINDU, as defined
so far, works if VC-0 in each router is VCT, i.e., sized to hold
complete packets (while other VCs can be smaller). To implement
BINDU in wormhole routers, we would need to support packet
truncation within VC-0, like prior works in deflection routing [13].

Bindu Movement Example. We explain the Bindu movement
within and across the router, with the example shown in Fig. 4.

(1) A Bindu enters the router from the North input port - this
effectively means that a packet sitting at the North input
port leaves the router to go sit in the South input port of the
upstream router, in place of the Bindu, as shown in Fig. 4(a).

(2) The Bubble Movement Unit encodes the period and the route
of the Bindu within this router. In the example in Fig. 4(b),
it moves the Bindu from the North to the East input port, via
the Bindu bus. This step is similar to BBR [14].

(3) The Bindu will traverse all input ports sequentially. The last
stop of the Bindu will be the input port, whose corresponding
output port is connected to the next router in Bindu’s path.

NOCS ’19, October 17–18, 2019, New York, NY, USA Mayank Parasar Tushar Krishna

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

fault-0 fault-1 fault-4 fault-8 fault-12

U
ni

fo
rm

 R
an

do
m

Tr
an

sp
os

e

escapeVC BBR BINDU-1SPIN

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

S
hu

ffl
e

Figure 6: Performance of BINDU compared against Deadlock avoidance, Deadlock recovery and BBR for synthetic traffic: Uniform-Random, Trans-
pose and Shuffle. Evaluated for vc=2, 64 node irregular topology derived from 8x8 Mesh.

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e

pa
ck

et
 la

te
nc

y

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42

Av
er

ag
e

pa
ck

et
 la

te
nc

y

Injection rate (packets injected/node/cycle)

Torus
Transpose
VC-2

Torus
Transpose
VC-4

CBS BBR BINDU-1 BINDU-32 BINDU-64

Figure 7: The graph compares the performance of BINDU with num
Bindu=1, 32, 64 respectively with Critical Bubble Scheme and BBR.
Graphs are for regular 8x8 Torus topology.

(4) The Bindu will use the crossbar to traverse to the neighbor
by moving a packet (or an empty slot) at VC-0 of the corre-
sponding input port from the neighbor to the current location
occupied by Bindu, as shown in Fig. 4(a).

(5) This whole process is now repeated at the neighboring router.
Implementation Cost. The hardware overhead of BINDU comes

because of addition of Bindu-bus, and Bindu Movement Unit. We
used DSENT [21] to estimate the area and power overhead. Area
overhead comes around 6% and static power overhead is 5% over
baseline router with VC=4.

Implementation choice for Bindu: In this work, we proposed
to embed Bindu-path inside the router, and Bindu moves through the
network along that specified path. Another implementation choice
could be to think of Bindu as a dummy packet which moves through-
out the network in a cyclic manner and never gets consumed. We
then could have the path for Bindu embedded inside the Bindu itself.
This would further simplify the router micro-architecture of BINDU,
as each router would then only need to read the content of Bindu
to know where to route it next. It would also be easier to reconfig-
ure Bindu’s path dynamically by updating the route within Bindu
based on some metric. However, the flexibility and reconfigurability
comes at the cost of scalability; encoding the Bindu-path will need
logN × logr× r-bits (where N is the number of nodes, and r is the
router radix), which can exceed typical flit sizes for large networks.

Implementation of Bindu-Path: There could also be multiple
ways in which Bindu path can be implemented as shown in Fig. 1.
These paths would have different network-performance sensitivity
for different irregular topologies. All these design choices are inter-
esting to explore in future work, we, however, do not present these
studies in this paper in the interest of space. We assume a snake-like
structure for regular topologies, and a tree for irregular topologies.

Table 2: Qualitative Comparisons of CBS, BBR and BINDU
CBS [7] BBR [14] BINDU

Bubble Imple-
mentation

Bubble is an
empty VC

Bubble is empty
VC

Bindu is reserved
VC or dummy
packet

Movement
Bubble moves
naturally as the
packet moves

Random pro-
active bubble
movement within
router

Proactive Bindu
movement as per
Bindu-path.

Minimum
Empty
Buffers

one bubble per
ring dimension.
8x8 torus net-
work requires 32
bubbles

one bubble per
router. 8x8 torus
requires 64 bub-
bles

one Bindu in the
entire network.
8x8 torus requires
one Bindu

Topologies
closed loop/ring
topologies, for ex-
ample Torus

Works for any ar-
bitrary topology

Works for any arbi-
trary topology

Routing
restriction

uses dimensional
order routing in
the VC that con-
tains the bubble

uses minimal
random adaptive
routing

BINDU uses min-
imal random adap-
tive routing

Misrouting No packet gets
mis-routed

in-frequent mis-
route during bub-
ble exchange

At most one packet
per Bindu move-
ment

Flexibility not flexible not flexible
flexible in terms of
number of Bindus
and their path

Reconfigurable not reconfig-
urable

not reconfig-
urable

dynamically recon-
figurable

3.7 Comparison with CBS and BBR
Here we delineate BINDU from two notable works which use bubble
to provide deadlock-freedom to the network. We paraphrase the main
points in Table 2. BBR can be viewed as Bindu-64.

4 EVALUATIONS
4.1 Methodology
BINDU is evaluated using gem5 [5] with the Garnet2.0 [1] network
model and the Ruby memory model. We use DSENT [21] to model
power and area for a 11 nm process. Table 3 lists all key configuration
parameters for our evaluation.

Baseline Networks. We select state-of-the-art baseline deadlock-
free networks to compare against BINDU. From deadlock-avoidance,
we use escape VCs (which are known to perform better than turn-
restriction schemes [16, 17]). From deadlock-resolution, we choose
SPIN [17], which has been shown to performs better than Static
Bubble [16]. From bubble-based, we choose BBR [14] and CBS [7].
BBR works for arbitrary topologies while CBS only for Torii.

BINDU: Deadlock-Freedom with One Bubble in the Network NOCS ’19, October 17–18, 2019, New York, NY, USA

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t. t

hr
ou

gh
pu

t

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t. t

hro
ug

hp
ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t. t

hro
ug

hp
ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t. t

hro
ug

hp
ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t.

th
ro

ug
hp

ut

15.5

15.7

15.9

16.1

16.3

Lo
w

loa
d l

at
en

cy

15.5

15.7

15.9

16.1

16.3

Lo
w

loa
d l

ate
nc

y

15.5

15.7

15.9

16.1

16.3

Lo
w

lo
ad

 la
te

nc
y

num-Bindu
15.5

15.7

15.9

16.1

16.3

Lo
w

lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y Fault-0 Fault-1 Fault-4 Fault-8

VC=2 VC=4

num-Bindu num-Bindu num-Bindu num-Bindu

Fault-12

1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

num-Bindu num-Bindu num-Bindu num-Bindu num-Bindu
1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

(a)

(b)

Figure 8: Graphs are for Transpose traffic pattern as number of Bindus increase from 1 to 64 in 8x8 irregular Mesh topologies with given fault.
Graph-(a) shows the effect of low-load latency. We observe that the affect of number of bubbles on performance, is more for the router with fewer
VCs compared to the router with more VCs per input port. All Bindus in BINDU are confined to VC-0 of each input port. Graph-(b) shows the effect
of saturation throughput. We observe that with increase in number of Bindus, saturation throughput decreases. Bindu-64 is similar to BBR

Table 3: Key Simulation Parameters.
Real application simulation parameters

Core 64 cores and RISCV ISA (Ligra), 1GHz
16 cores and x86 ISA (Parsec3.0), 1GHz

L1 Cache Private, 16KB Ins. + 16KB Data,
4-way set assoc.

Last Level Cache Shared, distributed, 64KB,
8-way set assoc.

Cache Block Size 64B
Cache Coherence MESI Directory (Ligra) Vnets=5

MOESI hammer (Parsec3.0) Vnets=6
Target Networks

Topology irregular 8x8 Mesh (Ligra and Synthetic workloads)
irregular 4x4 Mesh (Parsec3.0)

Router latency 1-cycle
Num VCs 1, 2 and 4
Buffer Organization Virtual Cut Through. Single packet per VC
Link Bandwidth 128 bits/cycle
Deadlock Avoidance Escape VC [11] with Up-Down [18] within Esc-VC
Deadlock Recovery SPIN [17]
Bubble based CBS [7]; BBR [14]; BINDU-k (k: num of Bindus)

Benchmarks. Both real applications and synthetic traffic are
used to evaluate BINDU. Applications are drawn from the Ligra
benchmark suites [20] and from Parsec3.0 [4] . For synthetic traffic,
we focus on uniform random, transpose and shuffle traffic with the
mix of 1-flit and 5-flit packet size; results for other traffic patterns are
qualitatively similar. The simulator is warmed-up for 1000 cycles,
thereafter network statistics are collected by injected fixed number
of tagged packets by each node in the system. Simulation completes
when all the tagged packets are received. We use an 8×8 irregular
network for Ligra and synthetic traffic. Ligra applications have been
simulated in syscall-emulation (SE) mode of gem5 while Parsec3.0
applications are simulated on irregular 4x4 network using full system
simulation mode in gem5.

Topologies. BINDU performance is evaluated on fault-free and
faulty 2D mesh networks as well as 2D Torus network topology.To
create irregular topologies from 2D mesh, faults are injected ran-
domly into the network while network connectivity is maintained as
shown in Fig. 5. For the 8×8 network, we consider a range of faulty
links up to 12 in 2D mesh.

4.2 Performance
Irregular topologies. Fig. 6 shows the performance comparison of
BINDU with other state of the art deadlock-freedom schemes. for
irregular 2D 8x8 Mesh. Key-takeaway from this performance graph
is that except regular 2D Mesh, BINDU performs comparably to
the state of the art solutions. In fact, under certain traffic pattern
for example uniform random and shuffle, BINDU performs better

0.9

1.1

1.3

1.5

1.7

1.9

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34
Injection rate (packets received/node/cycle)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

1 10 20 30 40 50 60 70 80 90 100

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

Bindu Movement Period

fault-0 fault-4 fault-8 fault-12

eVC
SPIN
BBR
B-1_P-1
B-1_P-32
B-1_P-64

B-1_P-512
B-1_P-1024

Oscillates between 2 to 14

(a) N
or

m
al

iz
ed

 e
xt

ra
 li

nk
 tr

av
er

sa
l p

er
 p

ac
ke

t

(b)

Figure 9: (a)Sensitivity of saturation throughput with increase in inter-
router Bindu movement period of one Bindu for uniform random traf-
fic. These results are for irregular 8x8 Mesh with VC=2.
(b)Uniform-random traffic, VC=2, with Fault-1. The graph shows the
extra link traversal over the baseline using minimal deadlock-free rout-
ing. Here B-1_P-X means Bindu-1 with ‘X’ as Bindu Movement Period
than state-of-the-art. On average, we see 15% improvement over
saturation throughput in synthetic traffic pattern using BINDU.

Bubble-based Schemes. Fig. 7 compares the performance of
state-of-the-art bubble based deadlock-freedom techniques with
BINDU for regular 8x8 Torus topology. Since CBS has 32, and BBR
has 64 bubbles, we also contrast against iso-Bindu configurations.
BINDU provides up to 2.2× higher throughput. Also, the perfor-
mance of BINDU decreases as the number of Bindus increases in the
topology. BBR can be approximately considered as Bindu-64 as now
each router has a Bindu/bubble. Therefore, BBR’s performance can
be approximated with Bindu-64, and Bindu-32 lies between Bindu-1
and BBR. We observe 35% throughput improvement for VC=2 and
15% higher throughput for VC=4 with BINDU-1 compared to BBR.

4.3 Sensitivity studies
4.3.1 Number of bubbles. Fig. 8(a) shows the sweep of low load
latency as the number of Bindus increases in the topology from one
to 64. In general, we see low load latency increases with an increase
in the number of Bindus, both for regular as well as irregular 8x8
Mesh topology. Affect on low load latency is more prominent for
VC=2 than VC=4. Also, sensitivity reduces for higher fragmented
topology (for example fault-12) compared to lower fragmented topol-
ogy (for example fault-1). Similar trends are shown by saturation
throughput as the number of Bindus increases, saturation throughput
decreases, for both regular and irregular Mesh topology in Fig. 8(b).
This happens mainly because of two reasons. Firstly, as the number
of Bindus increases, more packets will be misrouted in the network.
Secondly, Bindus cannot be consumed therefore they put indirect
restrictions on the number of packets that can be injected into the
network. Since Bindu only stays in VC-0, we see less sensitivity in
saturation throughput when there are many VCs (for example VC=4)
compared to when there are fewer VCs (for example VC=2).

NOCS ’19, October 17–18, 2019, New York, NY, USA Mayank Parasar Tushar Krishna

0
0.2
0.4
0.6

0.8
1

1.2

BC
BFS

BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

No
rm

al
ize

d
ru

nt
im

e

0

50

100

150

200

250

Barnes

Bodytra
ck

Canneal
FFT

F'a
nim

ate
FM

M
Lu_cb

Lu_ncb

Ocean_cp
Radix

Volre
nd

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y

0

50

100

150

200

250

Barnes

Bodytra
ck

Canneal
FFT

F'a
nim

ate
FM

M
Lu_cb

Lu_ncb

Ocean_cp
Radix

Volre
nd

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y
0

5

10

15

20

25

BC BFS
BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y

0

0.2

0.4

0.6
0.8

1

1.2

BC BFS
BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

No
rm

al
ize

d
ru

nt
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes

Bodytra
ck

Canneal
FF

T

F'a
nim

ate
FM

M
Lu

_cb

Lu
_ncb

Oce
an_cp

Radix

Volre
nd

Average

N
or

m
al

ize
d

ru
nt

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes

Bodytra
ck

Canneal
FF

T

F'a
nim

ate
FM

M
Lu

_cb

Lu
_ncb

Oce
an_cp

Radix

Volre
nd

Average

No
rm

al
ize

d
ru

nt
im

e

escapeVC BBR BINDU-1SPIN
Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2 Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2

0

5

10

15

20

25

BC
BFS

BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2 Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2
(a) (b)

(c) (d)
Figure 10: Packet latency from real workloads and their normalized runtime improvement with BINDU when compared to other state of the art
schemes. (a) and (b) are the packet latency and normalized runtime for Parsec while (c) and (d) are the same metrics for Ligra

4.3.2 Inter-router Bindu movement period sweep. Fig. 9-(a) shows
the sensitivity of saturation throughput with increase in inter-router
Bindu period. The experiment is performed for uniform random
traffic pattern with VC=2, with one Bindu in the whole network.
We observe decrease in saturation throughput with increase in inter-
router Bindu-period. This happens because it takes longer for the
Bindu to reach to the packets stuck in deadlock and free them from
deadlock.
4.3.3 Energy Overhead. Fig. 9-(b) shows the energy overhead for
various schemes, in the form of extra link-traversal per packet, over
the baseline assuming ideal minimal routing without any overhead
for an irregular mesh with one fault. For escape VC the extra link
traversal comes because of the non-minimal Up-Down [18] path
a packet takes to reach its destination within the Escape VC. We
observe higher overhead at lower injection rate because the fewer the
packets in the network, the more sensitive they are to non-minimal
path of escape VC. SPIN’s [17] overhead over ideal minimal routing
is because of probes used for detecting deadlock, especially at higher
loads due to increased forking at intermediate routers. BBR’s [14]
link traversal overhead is because of increased bubble-exchange at
high injection rate. BINDU’s extra link traversal over ideal minimal
routing is because at higher injection rate, there are more packets in
the network, hence the likelihood of Bindu replacing a packet, as
it moves along its path, increases. In summary, we can see that the
additional energy expended by the misroutes due to Bindu movement
is negligible at low-loads, and less than 10% post saturation (even
with an aggressive Bindu movement period of 1), which is either
equal to or much lower than other state-of-the-art solutions.
4.4 Real application results
Fig. 10-(a) and (b) show the packet latency and normalized runtime
improvement for Parsec3.0 benchmarks respectively. This culmi-
nates into 6% average improvement in runtime for fault-0 and 7%
average improvement in the runtime for fault-8 in 4x4 mesh respec-
tively. Fig. 10-(c) and (d) show the packet latency and normalized
runtime improvement for Ligra applications respectively. There is
overall around 5% improvement of BINDU over other schemes, in
both average total packet latency and runtime of the application.
5 CONCLUSION
BINDU is the first work, to the best of our knowledge, to demon-
strate deadlock freedom by reserving a single bubble (empty VC)
in the entire network, and pro-actively moving it through all routers
and all input ports. BINDU requires no deadlock-detection (un-
like deadlock recovery schemes) and requires no turn-restrictions

or escape VCs (unlike deadlock avoidance schemes). BINDU is
topology-agnostic and provides around 15% average throughput
improvement over state-of-the-art techniques in synthetic traffic, and
around 7% improvement on an average runtime of real applications.
This makes BINDU an effective solution to implement in irregular
network topologies to guarantee deadlock-freedom.

REFERENCES
[1] N. Agarwal et al. 2009. GARNET: A Detailed On-chip Network Model inside a

Full-system Simulator. In ISPASS.
[2] R. Al-Dujaily et al. 2012. Embedded Transitive Closure Network for Runtime

Deadlock Detection in Networks-on-Chip. IEEE Transactions on Parallel and
Distributed Systems.

[3] K. V. Anjan and Timothy Mark Pinkston. 1995. An Efficient, Fully Adaptive
Deadlock Recovery Scheme: DISHA. In ISCA.

[4] C. Bienia et al. 2008. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. In PACT.

[5] N. Binkert et al. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39,
2 (Aug. 2011).

[6] Lizhong Chen and Timothy M. Pinkston. 2013. Worm-Bubble Flow Control. In
HPCA. 366–377.

[7] L. Chen et al. . 2011. Critical Bubble Scheme: An Efficient Implementation of
Globally Aware Network Flow Control. In IPDPS. 592–603.

[8] W. J. Dally and H. Aoki. 1993. Deadlock-Free Adaptive Routing in Multicomputer
Networks Using Virtual Channels. IEEE TPDS 4, 4 (April 1993), 466–475.

[9] W. J. Dally and C. L. Seitz. 1987. Deadlock-Free Message Routing in Multipro-
cessor Interconnection Networks. IEEE Trans. Comput. (1987), 547–553.

[10] Jose Duato. 1993. A New Theory of Deadlock-Free Adaptive Routing in Worm-
hole Networks. IEEE Trans. Parallel Distrib. Syst. (1993).

[11] Jose Duato. 1995. A Necessary and Sufficient Condition for Deadlock-Free
Adaptive Routing in Wormhole Networks. IEEE Trans. Parallel Distrib. Syst. 6,
10 (Oct. 1995), 1055–1067.

[12] Christopher J. Glass and Lionel M. Ni. 1994. The Turn Model for Adaptive
Routing. J. ACM 41, 5 (Sept. 1994).

[13] Thomas Moscibroda and Onur Mutlu. 2009. A Case for Bufferless Routing in
On-chip Networks. In ISCA.

[14] M. Parasar, A. Sinha, and T. Krishna. 2018. Brownian Bubble Router: Enabling
Deadlock Freedom via Guaranteed Forward Progress. In NOCS. 1–8.

[15] V. Puente et al. 2001. The Adaptive Bubble Router. J. Parallel Distrib. Comput.
61, 9 (Sept. 2001).

[16] Aniruddh Ramrakhyani and Tushar Krishna. 2017. Static Bubble: A Framework
for Deadlock-Free Irregular On-chip Topologies. In HPCA. 253–264.

[17] A. Ramrakhyani et al. 2018. Synchronized Progress in Interconnection Networks
(SPIN) : A New Theory for Deadlock Freedom. In ISCA.

[18] M. D. Schroeder et al. 1991. Autonet: A High-Speed, Self-Configuring Local
Area Network Using Point-to-Point Links. J-SAC 9, 8 (1991).

[19] D. Seo et al. 2005. Near-optimal worst-case throughput routing for two-
dimensional mesh networks. In ISCA.

[20] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. SIGPLAN Not. 48, 8 (2013), 135–146.

[21] C. Sun et al. 2012. DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling. In NOCS.

[22] R. Wang et al. 2013. Bubble Coloring: Avoiding Routing- and Protocol-induced
Deadlocks with Minimal Virtual Channel Requirement. In ICS ’13.

[23] Yuankun Xue and Paul Bogdan. 2015. User cooperation network coding approach
for NoC performance improvement. In NOCS. ACM, 17.

	Abstract
	Introduction
	Background and Related work
	 BINDU Network
	Definitions
	Basic Idea and Walk-through Example
	Bindu Path
	Bindu Movement
	Proof of Deadlock freedom
	Router micro-architecture
	Comparison with CBS and BBR

	Evaluations
	Methodology
	Performance
	Sensitivity studies
	Real application results

	Conclusion
	References

